With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ...With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.展开更多
Turbulent gas-particle flows are studied by a kinetic description using a prob- ability density function (PDF). Unlike other investigators deriving the particle Reynolds stress equations using the PDF equations, the...Turbulent gas-particle flows are studied by a kinetic description using a prob- ability density function (PDF). Unlike other investigators deriving the particle Reynolds stress equations using the PDF equations, the particle PDF transport equations are di- rectly solved either using a finite-difference method for two-dimensional (2D) problems or using a Monte-Carlo (MC) method for three-dimensional (3D) problems. The proposed differential stress model together with the PDF (DSM-PDF) is used to simulate turbulent swirling gas-particle flows. The simulation results are compared with the experimental results and the second-order moment (SOM) two-phase modeling results. All of these simulation results are in agreement with the experimental results, implying that the PDF approach validates the SOM two-phase turbulence modeling. The PDF model with the SOM-MC method is used to simulate evaporating gas-droplet flows, and the simulation results are in good agreement with the experimental results.展开更多
This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary erro...This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary error model and the identification principle based on the probability density function(PDF). The main contribution is that the NFM parameter updating approach is transformed into the shape control for the PDF of modeling error. More specifically, a virtual adaptive control system is constructed with the aid of the auxiliary error model and then the PDF shape control idea is used to tune NFM parameters so that the PDF of modeling error is controlled to follow a targeted PDF, which is in Gaussian or uniform distribution. Examples are used to validate the applicability of the proposed method and comparisons are made with the minimum mean square error based approaches.展开更多
A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in tr...A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in traditional identification methods.Firstly,a neuro-fuzzy based Hammerstein model is constructed to describe the nonlinearity of Hammerstein process without any prior process knowledge.Secondly,a kind of special test signal is used to separate the link parts of the Hammerstein model.More specifically,the conception of PDF is introduced to solve the identification problem of the neuro-fuzzy Hammerstein model.The antecedent parameters are estimated by a clustering algorithm,while the consequent parameters of the model are identified by designing a virtual PDF control system in which the PDF of the modeling error is estimated and controlled to converge to the target.The proposed method not only guarantees the accuracy of the model but also dominates the spatial distribution of PDF of the model error to improve the generalization ability of the model.Simulated results show the effectiveness of the proposed method.展开更多
Here the estimating problem of a single sinusoidal signal in the additive symmetricα-stable Gaussian(ASαSG)noise is investigated.The ASαSG noise here is expressed as the additive of a Gaussian noise and a symmetric...Here the estimating problem of a single sinusoidal signal in the additive symmetricα-stable Gaussian(ASαSG)noise is investigated.The ASαSG noise here is expressed as the additive of a Gaussian noise and a symmetricα-stable distributed variable.As the probability density function(PDF)of the ASαSG is complicated,traditional estimators cannot provide optimum estimates.Based on the Metropolis-Hastings(M-H)sampling scheme,a robust frequency estimator is proposed for ASαSG noise.Moreover,to accelerate the convergence rate of the developed algorithm,a new criterion of reconstructing the proposal covar-iance is derived,whose main idea is updating the proposal variance using several previous samples drawn in each iteration.The approximation PDF of the ASαSG noise,which is referred to the weighted sum of a Voigt function and a Gaussian PDF,is also employed to reduce the computational complexity.The computer simulations show that the performance of our method is better than the maximum likelihood and the lp-norm estimators.展开更多
Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control l...Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control loops critical for managing Industry 5.0 deployments,digital agriculture systems,and essential infrastructures.The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised.While full automation will enhance industrial efficiency significantly,it concurrently introduces new cyber risks and vulnerabilities.In particular,unattended systems are highly susceptible to trust issues:malicious nodes and false information can be easily introduced into control loops.Additionally,Denialof-Service attacks can be executed by inundating the network with valueless noise.Current anomaly detection schemes require the entire transformation of the control software to integrate new steps and can only mitigate anomalies that conform to predefined mathematical models.Solutions based on an exhaustive data collection to detect anomalies are precise but extremely slow.Standard models,with their limited understanding of mobile networks,can achieve precision rates no higher than 75%.Therefore,more general and transversal protection mechanisms are needed to detect malicious behaviors transparently.This paper introduces a probabilistic trust model and control algorithm designed to address this gap.The model determines the probability of any node to be trustworthy.Communication channels are pruned for those nodes whose probability is below a given threshold.The trust control algorithmcomprises three primary phases,which feed themodel with three different probabilities,which are weighted and combined.Initially,anomalous nodes are identified using Gaussian mixture models and clustering technologies.Next,traffic patterns are studied using digital Bessel functions and the functional scalar product.Finally,the information coherence and content are analyzed.The noise content and abnormal information sequences are detected using a Volterra filter and a bank of Finite Impulse Response filters.An experimental validation based on simulation tools and environments was carried out.Results show the proposed solution can successfully detect up to 92%of malicious data injection attacks.展开更多
Highly versatile machines, such as wheel loaders, forklifts, and mining haulers, are subject to many kinds of working conditions, as well as indefinite factors that lead to the complexity of the load. The load probabi...Highly versatile machines, such as wheel loaders, forklifts, and mining haulers, are subject to many kinds of working conditions, as well as indefinite factors that lead to the complexity of the load. The load probability distribution function (PDF) of transmission gears has many distributions centers; thus, its PDF cannot be well represented by just a single-peak function. For the purpose of representing the distribution characteristics of the complicated phenomenon accurately, this paper proposes a novel method to establish a mixture model. Based on linear regression models and correlation coefficients, the proposed method can be used to automatically select the best-fitting function in the mixture model. Coefficient of determination, the mean square error, and the maximum deviation are chosen and then used as judging criteria to describe the fitting precision between the theoretical distribution and the corresponding histogram of the available load data. The applicability of this modeling method is illustrated by the field testing data of a wheel loader. Meanwhile, the load spectra based on the mixture model are compiled. The comparison results show that the mixture model is more suitable for the description of the load-distribution characteristics. The proposed research improves the flexibility and intelligence of modeling, reduces the statistical error and enhances the fitting accuracy, and the load spectra complied by this method can better reflect the actual load characteristic of the gear component.展开更多
A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model ident...A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model identification. The tracked object is the statistical information of a given target probability density function (PDF), rather than a deterministic signal. Following B-spline approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. Different from the previous related works, the time delay T-S fuzzy models with the exogenous disturbances are applied to identify the nonlinear weighting dynamics. Meanwhile, the generalized PID controller structure and the improved convex linear matrix inequalities (LMI) algorithms are proposed to fulfil the tracking problem. Furthermore, in order to enhance the robust performance, the peak-to-peak measure index is applied to optimize the tracking performance. Simulations are given to demonstrate the efficiency of the proposed approach.展开更多
Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,P...Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,PHD filter has a closed form recursion (GMPHD). But PHD filter cannot estimate the trajectories of multi-target because it only provides identity-free estimate of target states. Existing data association methods still remain a big challenge mostly because they are com-putationally expensive. In this paper,we proposed a new data association algorithm using GMPHD filter,which significantly alleviated the heavy computing load and performed multi-target trajectory tracking effectively in the meantime.展开更多
The particle Probability Hypotheses Density (particle-PHD) filter is a tractable approach for Random Finite Set (RFS) Bayes estimation, but the particle-PHD filter can not directly derive the target track. Most existi...The particle Probability Hypotheses Density (particle-PHD) filter is a tractable approach for Random Finite Set (RFS) Bayes estimation, but the particle-PHD filter can not directly derive the target track. Most existing approaches combine the data association step to solve this problem. This paper proposes an algorithm which does not need the association step. Our basic ideal is based on the clustering algorithm of Finite Mixture Models (FMM). The intensity distribution is first derived by the particle-PHD filter, and then the clustering algorithm is applied to estimate the multitarget states and tracks jointly. The clustering process includes two steps: the prediction and update. The key to the proposed algorithm is to use the prediction as the initial points and the convergent points as the es- timates. Besides, Expectation-Maximization (EM) and Markov Chain Monte Carlo (MCMC) ap- proaches are used for the FMM parameter estimation.展开更多
The timely and accurately detection of abnormal aircraft trajectory is critical to improving flight safety.However,the existing anomaly detection methods based on machine learning cannot well characterize the features...The timely and accurately detection of abnormal aircraft trajectory is critical to improving flight safety.However,the existing anomaly detection methods based on machine learning cannot well characterize the features of aircraft trajectories.Low anomaly detection accuracy still exists due to the high-dimensionality,heterogeneity and temporality of flight trajectory data.To this end,this paper proposes an abnormal trajectory detection method based on the deep mixture density network(DMDN)to detect flights with unusual data patterns and evaluate flight trajectory safety.The technique consists of two components:Utilization of the deep long short-term memory(LSTM)network to encode features of flight trajectories effectively,and parameterization of the statistical properties of flight trajectory using the Gaussian mixture model(GMM).Experiment results on Guangzhou Baiyun International Airport terminal airspace show that the proposed method can effectively capture the statistical patterns of aircraft trajectories.The model can detect abnormal flights with elevated risks and its performance is superior to two mainstream methods.The proposed model can be used as an assistant decision-making tool for air traffic controllers.展开更多
The original Probability Hypothesis Density (PHD) filter is a tractable algorithm for Multi-Target Tracking (MTT) in Random Finite Set (RFS) frameworks. In this paper,we introduce a novel Evidence PHD (E-PHD) filter w...The original Probability Hypothesis Density (PHD) filter is a tractable algorithm for Multi-Target Tracking (MTT) in Random Finite Set (RFS) frameworks. In this paper,we introduce a novel Evidence PHD (E-PHD) filter which combines the Dempster-Shafer (DS) evidence theory. The proposed filter can deal with the uncertain information,thus it forms target track. We mainly discusses the E-PHD filter under the condition of linear Gaussian. Research shows that the E-PHD filter has an analytic form of Evidence Gaussian Mixture PHD (E-GMPHD). The final experiment shows that the proposed E-GMPHD filter can derive the target identity,state,and number effectively.展开更多
The Gaussian Copula Probability Density Function (PDF) plays an important role in the fields of finance, hydrological modeling, biomedical study, and texture retrieval. However, the existing schemes for evaluating t...The Gaussian Copula Probability Density Function (PDF) plays an important role in the fields of finance, hydrological modeling, biomedical study, and texture retrieval. However, the existing schemes for evaluating the Gaussian Copula PDF are all computationally-demanding and generally the most time-consuming part in the corresponding applications. In this paper, we propose an FPGA-based design to accelerate the computation of the Gaussian Copula PDF. Specifically, the evaluation of the Gaussian Copula PDF is mapped into a fully-pipelined FPGA dataflow engine by using three optimization steps: transforming the calculation pattern, eliminating constant computations from hardware logic, and extending calculations to multiple pipelines. In the experiments on 10 typical large-scale data sets, our FPGA-based solution shows a maximum of 1870 times speedup over a well-tuned single- core CPU-based solution, and 610 times speedup over a well-optimized parallel quad-core CPU-based solution when processing two-dimensional data.展开更多
以对铁道车辆轴箱振动非高斯特征与分布为对象开展研究。基于列车线路轴箱实测加速度信号,提取由轨道冲击引起的轴箱振动特征非高斯信号。使用多个概率密度函数(Probability Density Function,PDF)模型对实测信号进行拟合,并与实测特征...以对铁道车辆轴箱振动非高斯特征与分布为对象开展研究。基于列车线路轴箱实测加速度信号,提取由轨道冲击引起的轴箱振动特征非高斯信号。使用多个概率密度函数(Probability Density Function,PDF)模型对实测信号进行拟合,并与实测特征信号的经验分布进行对比,评估各模型对轴箱特征非高斯信号的拟合精度。基于W-H非线性变换模型,建立一种非高斯信号模拟方法。利用模拟信号分析非高斯特征对各模型拟合精度的影响。结果表明:列车在行驶过程中具有非高斯特征,当列车经过轨道焊接接头、道岔与波磨路段时,由于轮轨冲击,非高斯特征明显增大,车轮多边形对信号非高斯特征几乎没有影响;基于W-H模型的非线性变换法,可以在保证模拟信号功率谱与指定功率谱基本一致的情况下,进行不同非高斯特征的信号模拟;高斯混合模型能够对铁道车辆非高斯信号较为准确地拟合;随着模拟非高斯信号峭度与偏度的增大,各模型与经验分布的相对误差也会增大,其中高斯混合模型拟合精度相对较高。展开更多
基金supported by the National Natural Science Foundation of China(61703228)
文摘With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.
基金supported by the National Natural Science Foundation of China(No.51390493)
文摘Turbulent gas-particle flows are studied by a kinetic description using a prob- ability density function (PDF). Unlike other investigators deriving the particle Reynolds stress equations using the PDF equations, the particle PDF transport equations are di- rectly solved either using a finite-difference method for two-dimensional (2D) problems or using a Monte-Carlo (MC) method for three-dimensional (3D) problems. The proposed differential stress model together with the PDF (DSM-PDF) is used to simulate turbulent swirling gas-particle flows. The simulation results are compared with the experimental results and the second-order moment (SOM) two-phase modeling results. All of these simulation results are in agreement with the experimental results, implying that the PDF approach validates the SOM two-phase turbulence modeling. The PDF model with the SOM-MC method is used to simulate evaporating gas-droplet flows, and the simulation results are in good agreement with the experimental results.
基金Supported by the National Natural Science Foundation of China(61374044)Shanghai Science Technology Commission(12510709400)+1 种基金Shanghai Municipal Education Commission(14ZZ088)Shanghai Talent Development Plan
文摘This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary error model and the identification principle based on the probability density function(PDF). The main contribution is that the NFM parameter updating approach is transformed into the shape control for the PDF of modeling error. More specifically, a virtual adaptive control system is constructed with the aid of the auxiliary error model and then the PDF shape control idea is used to tune NFM parameters so that the PDF of modeling error is controlled to follow a targeted PDF, which is in Gaussian or uniform distribution. Examples are used to validate the applicability of the proposed method and comparisons are made with the minimum mean square error based approaches.
基金National Natural Science Foundation of China(No.61374044)Shanghai Municipal Science and Technology Commission,China(No.15510722100)+2 种基金Shanghai Municipal Education Commission,China(No.14ZZ088)Shanghai Talent Development Plan,ChinaShanghai Baoshan Science and Technology Commission,China(No.bkw2013120)
文摘A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in traditional identification methods.Firstly,a neuro-fuzzy based Hammerstein model is constructed to describe the nonlinearity of Hammerstein process without any prior process knowledge.Secondly,a kind of special test signal is used to separate the link parts of the Hammerstein model.More specifically,the conception of PDF is introduced to solve the identification problem of the neuro-fuzzy Hammerstein model.The antecedent parameters are estimated by a clustering algorithm,while the consequent parameters of the model are identified by designing a virtual PDF control system in which the PDF of the modeling error is estimated and controlled to converge to the target.The proposed method not only guarantees the accuracy of the model but also dominates the spatial distribution of PDF of the model error to improve the generalization ability of the model.Simulated results show the effectiveness of the proposed method.
基金supported by National Key R&D Program of China(Grant No.2018YFF01012600)National Natural Science Foundation of China(Grant No.61701021)Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-19-006A3).
文摘Here the estimating problem of a single sinusoidal signal in the additive symmetricα-stable Gaussian(ASαSG)noise is investigated.The ASαSG noise here is expressed as the additive of a Gaussian noise and a symmetricα-stable distributed variable.As the probability density function(PDF)of the ASαSG is complicated,traditional estimators cannot provide optimum estimates.Based on the Metropolis-Hastings(M-H)sampling scheme,a robust frequency estimator is proposed for ASαSG noise.Moreover,to accelerate the convergence rate of the developed algorithm,a new criterion of reconstructing the proposal covar-iance is derived,whose main idea is updating the proposal variance using several previous samples drawn in each iteration.The approximation PDF of the ASαSG noise,which is referred to the weighted sum of a Voigt function and a Gaussian PDF,is also employed to reduce the computational complexity.The computer simulations show that the performance of our method is better than the maximum likelihood and the lp-norm estimators.
基金funding by Comunidad de Madrid within the framework of the Multiannual Agreement with Universidad Politécnica de Madrid to encourage research by young doctors(PRINCE project).
文摘Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control loops critical for managing Industry 5.0 deployments,digital agriculture systems,and essential infrastructures.The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised.While full automation will enhance industrial efficiency significantly,it concurrently introduces new cyber risks and vulnerabilities.In particular,unattended systems are highly susceptible to trust issues:malicious nodes and false information can be easily introduced into control loops.Additionally,Denialof-Service attacks can be executed by inundating the network with valueless noise.Current anomaly detection schemes require the entire transformation of the control software to integrate new steps and can only mitigate anomalies that conform to predefined mathematical models.Solutions based on an exhaustive data collection to detect anomalies are precise but extremely slow.Standard models,with their limited understanding of mobile networks,can achieve precision rates no higher than 75%.Therefore,more general and transversal protection mechanisms are needed to detect malicious behaviors transparently.This paper introduces a probabilistic trust model and control algorithm designed to address this gap.The model determines the probability of any node to be trustworthy.Communication channels are pruned for those nodes whose probability is below a given threshold.The trust control algorithmcomprises three primary phases,which feed themodel with three different probabilities,which are weighted and combined.Initially,anomalous nodes are identified using Gaussian mixture models and clustering technologies.Next,traffic patterns are studied using digital Bessel functions and the functional scalar product.Finally,the information coherence and content are analyzed.The noise content and abnormal information sequences are detected using a Volterra filter and a bank of Finite Impulse Response filters.An experimental validation based on simulation tools and environments was carried out.Results show the proposed solution can successfully detect up to 92%of malicious data injection attacks.
基金supported by National Natural Science Foundation of China (Grant Nos. 50805065, 51075179)
文摘Highly versatile machines, such as wheel loaders, forklifts, and mining haulers, are subject to many kinds of working conditions, as well as indefinite factors that lead to the complexity of the load. The load probability distribution function (PDF) of transmission gears has many distributions centers; thus, its PDF cannot be well represented by just a single-peak function. For the purpose of representing the distribution characteristics of the complicated phenomenon accurately, this paper proposes a novel method to establish a mixture model. Based on linear regression models and correlation coefficients, the proposed method can be used to automatically select the best-fitting function in the mixture model. Coefficient of determination, the mean square error, and the maximum deviation are chosen and then used as judging criteria to describe the fitting precision between the theoretical distribution and the corresponding histogram of the available load data. The applicability of this modeling method is illustrated by the field testing data of a wheel loader. Meanwhile, the load spectra based on the mixture model are compiled. The comparison results show that the mixture model is more suitable for the description of the load-distribution characteristics. The proposed research improves the flexibility and intelligence of modeling, reduces the statistical error and enhances the fitting accuracy, and the load spectra complied by this method can better reflect the actual load characteristic of the gear component.
基金supported by National Natural Science Foundationof China (No. 60472065, No. 60774013).
文摘A new robust proportional-integral-derivative (PID) tracking control framework is considered for stochastic systems with non-Gaussian variable based on B-spline neural network approximation and T-S fuzzy model identification. The tracked object is the statistical information of a given target probability density function (PDF), rather than a deterministic signal. Following B-spline approximation to the integrated performance function, the concerned problem is transferred into the tracking of given weights. Different from the previous related works, the time delay T-S fuzzy models with the exogenous disturbances are applied to identify the nonlinear weighting dynamics. Meanwhile, the generalized PID controller structure and the improved convex linear matrix inequalities (LMI) algorithms are proposed to fulfil the tracking problem. Furthermore, in order to enhance the robust performance, the peak-to-peak measure index is applied to optimize the tracking performance. Simulations are given to demonstrate the efficiency of the proposed approach.
基金Supported by the National Natural Science Foundation of China (No.60772154)the President Foundation of Graduate University of Chinese Academy of Sciences (No.085102GN00)
文摘Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,PHD filter has a closed form recursion (GMPHD). But PHD filter cannot estimate the trajectories of multi-target because it only provides identity-free estimate of target states. Existing data association methods still remain a big challenge mostly because they are com-putationally expensive. In this paper,we proposed a new data association algorithm using GMPHD filter,which significantly alleviated the heavy computing load and performed multi-target trajectory tracking effectively in the meantime.
基金Supported by the National Key Fundamental Research & Development Program of China (2007CB11006)the Zhejiang Natural Science Foundation (R106745, Y1080422)
文摘The particle Probability Hypotheses Density (particle-PHD) filter is a tractable approach for Random Finite Set (RFS) Bayes estimation, but the particle-PHD filter can not directly derive the target track. Most existing approaches combine the data association step to solve this problem. This paper proposes an algorithm which does not need the association step. Our basic ideal is based on the clustering algorithm of Finite Mixture Models (FMM). The intensity distribution is first derived by the particle-PHD filter, and then the clustering algorithm is applied to estimate the multitarget states and tracks jointly. The clustering process includes two steps: the prediction and update. The key to the proposed algorithm is to use the prediction as the initial points and the convergent points as the es- timates. Besides, Expectation-Maximization (EM) and Markov Chain Monte Carlo (MCMC) ap- proaches are used for the FMM parameter estimation.
基金supported in part by the National Natural Science Foundation of China(Nos.62076126,52075031)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX19_0013)。
文摘The timely and accurately detection of abnormal aircraft trajectory is critical to improving flight safety.However,the existing anomaly detection methods based on machine learning cannot well characterize the features of aircraft trajectories.Low anomaly detection accuracy still exists due to the high-dimensionality,heterogeneity and temporality of flight trajectory data.To this end,this paper proposes an abnormal trajectory detection method based on the deep mixture density network(DMDN)to detect flights with unusual data patterns and evaluate flight trajectory safety.The technique consists of two components:Utilization of the deep long short-term memory(LSTM)network to encode features of flight trajectories effectively,and parameterization of the statistical properties of flight trajectory using the Gaussian mixture model(GMM).Experiment results on Guangzhou Baiyun International Airport terminal airspace show that the proposed method can effectively capture the statistical patterns of aircraft trajectories.The model can detect abnormal flights with elevated risks and its performance is superior to two mainstream methods.The proposed model can be used as an assistant decision-making tool for air traffic controllers.
基金Supports in part by the NSFC (No. 60772006, 60874105)the ZJNSF(Y1080422, R106745)NCET (08- 0345)
文摘The original Probability Hypothesis Density (PHD) filter is a tractable algorithm for Multi-Target Tracking (MTT) in Random Finite Set (RFS) frameworks. In this paper,we introduce a novel Evidence PHD (E-PHD) filter which combines the Dempster-Shafer (DS) evidence theory. The proposed filter can deal with the uncertain information,thus it forms target track. We mainly discusses the E-PHD filter under the condition of linear Gaussian. Research shows that the E-PHD filter has an analytic form of Evidence Gaussian Mixture PHD (E-GMPHD). The final experiment shows that the proposed E-GMPHD filter can derive the target identity,state,and number effectively.
基金supported in part by the National Natural Science Foundation of China (Nos. 61303003,41374113,and 41375102)the National High-Tech Research and Development (863) Program of China (Nos. 2011AA01A203 and 2013AA01A208)the National Key Basic Research and Development (973) Program of China (No. 2014CB347800)
文摘The Gaussian Copula Probability Density Function (PDF) plays an important role in the fields of finance, hydrological modeling, biomedical study, and texture retrieval. However, the existing schemes for evaluating the Gaussian Copula PDF are all computationally-demanding and generally the most time-consuming part in the corresponding applications. In this paper, we propose an FPGA-based design to accelerate the computation of the Gaussian Copula PDF. Specifically, the evaluation of the Gaussian Copula PDF is mapped into a fully-pipelined FPGA dataflow engine by using three optimization steps: transforming the calculation pattern, eliminating constant computations from hardware logic, and extending calculations to multiple pipelines. In the experiments on 10 typical large-scale data sets, our FPGA-based solution shows a maximum of 1870 times speedup over a well-tuned single- core CPU-based solution, and 610 times speedup over a well-optimized parallel quad-core CPU-based solution when processing two-dimensional data.
文摘以对铁道车辆轴箱振动非高斯特征与分布为对象开展研究。基于列车线路轴箱实测加速度信号,提取由轨道冲击引起的轴箱振动特征非高斯信号。使用多个概率密度函数(Probability Density Function,PDF)模型对实测信号进行拟合,并与实测特征信号的经验分布进行对比,评估各模型对轴箱特征非高斯信号的拟合精度。基于W-H非线性变换模型,建立一种非高斯信号模拟方法。利用模拟信号分析非高斯特征对各模型拟合精度的影响。结果表明:列车在行驶过程中具有非高斯特征,当列车经过轨道焊接接头、道岔与波磨路段时,由于轮轨冲击,非高斯特征明显增大,车轮多边形对信号非高斯特征几乎没有影响;基于W-H模型的非线性变换法,可以在保证模拟信号功率谱与指定功率谱基本一致的情况下,进行不同非高斯特征的信号模拟;高斯混合模型能够对铁道车辆非高斯信号较为准确地拟合;随着模拟非高斯信号峭度与偏度的增大,各模型与经验分布的相对误差也会增大,其中高斯混合模型拟合精度相对较高。