Based on the mathematical model of a novel cosine gear drive, a few characteristics, such as the contact ratio, the sliding coefficient, and the contact and bending stresses, of this drive are analyzed. A comparison s...Based on the mathematical model of a novel cosine gear drive, a few characteristics, such as the contact ratio, the sliding coefficient, and the contact and bending stresses, of this drive are analyzed. A comparison study of these characteristics with the involute gear drive is also carried out. The influences of design parameters including the number of teeth and the pressure angle on the contact and bending stresses are studied. The following conclusions are achieved: the contact ratio of the cosine gear drive is about 1.2 to 1.3, which is reduced by about 20% in comparison with that of the involute gear drive. The sliding coefficient of the cosine gear drive is smaller than that of the involute gear drive. The contact and bending stresses of the cosine gear drive are lower than those of the involute gear drive. The contact and bending stresses decrease with the growth of the number of teeth and the pressure angle.展开更多
The structure of cylindrical tri-sine oscillating tooth gear drive is presented. Based on the space meshing theory, equations of meshing and tooth profile are established and its meshing theory is studied. Using Pro/E...The structure of cylindrical tri-sine oscillating tooth gear drive is presented. Based on the space meshing theory, equations of meshing and tooth profile are established and its meshing theory is studied. Using Pro/E, this system is modeled and simulated,which is compared with the above-established equations.展开更多
From the general formula for calculating the efficiency of planetary geartrains, the efficiency of the double crank ring-plate-type pin-cycloidal gear planetary drive isderived. To prove the theory, an experimental st...From the general formula for calculating the efficiency of planetary geartrains, the efficiency of the double crank ring-plate-type pin-cycloidal gear planetary drive isderived. To prove the theory, an experimental study has been conducted. The tested value of theefficiency of a sample set of the new-type drive in the experiment agrees with the calculated one.It shows that the new-type drive is of not merely high bearing capacity, but also quite highefficiency.展开更多
Mesh stiffness is one of important base parameters of face gear dynamic studies.However,a calculation solution of mesh stiffness of face gear drives is not to be constructed due to complex geometric flakes of face gea...Mesh stiffness is one of important base parameters of face gear dynamic studies.However,a calculation solution of mesh stiffness of face gear drives is not to be constructed due to complex geometric flakes of face gear teeth.Thus,a calculation solution of mesh stiffness of face gear drives with a spur gear,which is based on the proposed equivalent face gear teeth and Ishikawa model,is constructed,and the influence of contact effects on mesh stiffness of face gear drives is investigated.The results indicate the mesh stiffness of face gear drives is sensitive to contact effects under heavy loaded operating conditions,specially.These contributions will benefit to improve dynamic studies of face gear drives.展开更多
The friction drive elevators the influence of the braking distance has very high significance to meet certain safety regulations and comfort.During the emergency braking the delay for the system a frame and a cabin sh...The friction drive elevators the influence of the braking distance has very high significance to meet certain safety regulations and comfort.During the emergency braking the delay for the system a frame and a cabin should be within the range from 0.2 to 9.81 m/s~2.However,there are no specialist literatures regarding the issues connected with emergency braking of elevating devices either.The results of the own empirical research work are presented regarding the influence of design changes on the working parameters of the friction drive elevator gears.ASG100,KB 160,PP16,PR2000UD and CHP2000 types of safety progressive gears are analyzed.ASG100,KB 160,PP16,PR2000UD type progressive gears are already produced by European manufacturers.CHP2000 type gears are established as the alternative option for the already existing solutions.The unique cam system has been used in the CHP 2000 gears.The cam leverage gives the chance to unblock,in a very easy way,the clamed gears after braking.Thus,it is a key aspect to perform laboratory tests over the braking process of a newly created solution.The proper value of the braking distance has a significant influence on the value of delay in terms of binding standards.The influence of loading on the effective braking distance and the value of the falling elevator cabin speed are analyzed and the results are presented.The results presented are interesting from lift devices operation and a new model of CHP 2000progressive gear point of view.展开更多
This paper presents the method of model based incipientfault detection for gear drives, this method is based on parity space method It can generate the robust residual that is maximally sensitive to the fault caused b...This paper presents the method of model based incipientfault detection for gear drives, this method is based on parity space method It can generate the robust residual that is maximally sensitive to the fault caused by the change of the parameters. The example of simulation shows the application of the method and the residual waves have different characteristics due to different parameter changes; one can detect and isolate the fault based on the different characteristics.展开更多
This paper takes the boring head of 20 roll mill as the research object,optimizes the vibration inside the boring head through a differential damping structure,and then conducts the 3 d model inside the boring head th...This paper takes the boring head of 20 roll mill as the research object,optimizes the vibration inside the boring head through a differential damping structure,and then conducts the 3 d model inside the boring head through SolidWorks,and checks the interference of the boring head model.Finally,Ansys workbench finite element analysis software is used to analyze and verify the vibration damping characteristics of the differential damping structure.展开更多
Accurate description of the elastic deformation of the flexspline is the foundation for optimization design of the structure and conjugate profiles of the harmonic drive gear. This paper proposed an experimental metho...Accurate description of the elastic deformation of the flexspline is the foundation for optimization design of the structure and conjugate profiles of the harmonic drive gear. This paper proposed an experimental method to investigate the effect of the driving speed on the deformation characteristics of the flexspline. First, an experimental apparatus that integrates a special-fabricated micro-displacement platform and a pair of laser displacement sensors is developed, and the radial displacement of the flexspline is measured in vertical and horizontal directions. Next, the deformation analyses of the flexspline at different driving speeds are performed with our method and the conventional method, and the comparison results reveal that the radial displacement of the flexspline is actually composed of both harmonic and random components, and the amplitude decreases and tends to zero with the increase of the driving speed, especially near the closed end of the flexspline. Last, the mechanisms of the inherent multi-frequency and amplitude attenuation characteristics of the radial displacement of the flexspline are discussed. It is indicated that the impact and friction existing in the flexible bearing of the wave generator is likely responsible for the existence of the random component, and the assumption of linear distribution of the ftexspline deformation along the rotating axis is invalid under high speed condition. Our research promotes the further study on the contact-impact problem of the flexible bearing of the wave generator and the transfer characteristic of the elastic deformation of the flexspline.展开更多
The coupling of the local contact problems between the components and the deformation of the components in the mechanical system were discovered.A series of coordinate systems have been founded to describe the mechani...The coupling of the local contact problems between the components and the deformation of the components in the mechanical system were discovered.A series of coordinate systems have been founded to describe the mechanical system with the contact problems.The method of isolating the boundary of contact body from others has been used to describe the constraint between the contacting points.A more generalized static mechanics model of the mechanical system with the contact problems has been founded through the principle of virtual work.As an application,the model was used to study the multi_teeth engagement problems in the inner meshed planet gear systems.The stress distribution of contact gears was got.A test has verified that the static contact model and the computational method are right.展开更多
A lack of accurate description of the meshing characteristics and the corresponding frictional mechanism of the harmonic drive gear has limited progress toward modeling the hysteresis stiffness. This paper presents a ...A lack of accurate description of the meshing characteristics and the corresponding frictional mechanism of the harmonic drive gear has limited progress toward modeling the hysteresis stiffness. This paper presents a method for detection and quantification of the meshing characteristics of the harmonic drive gear based on computer vision. First, an experimental set-up that integrates a high speed camera system with a lighting system is developed, and the image processing is adopted to extract and polish the tooth profiles of the meshed teeth pairs in each acquired video sequence. Next, a physical-mathematical model is established to determine the relative positions of the selected tooth pair in the process of the gear engagement, and the combined standard uncertainty is utilized to evaluate the accuracy of the calculated kinematics parameters. Last, the kinematics analysis of the gear engagement under the ultra-low speed condition is performed with our method and previous method, and the influence of the input rotational speed on the results is examined. The results validate the effectiveness of our method, and indicate that the conventional method is not available in the future friction analysis. It is also shown that the engaging-in phase is approximately a uniform motion process, the engaging-out phase is a variable motion process, and these characteristics remain unchanged with the variation of the input rotational speed. Our method affords the ability to understand the frictional mechanism on the meshed contact surfaces of the harmonic drive gear, and also allows for the dynamic monitoring of the meshing properties.展开更多
基金National Natural Science Foundation of China(No.50575071)Natural Science Foundation of Hunan Province,China(No.06JJl0008)+1 种基金S&T Programs of Hunan Province,China(No.2007FJ4047)Program for New Century Excellent Talents in University,China.
文摘Based on the mathematical model of a novel cosine gear drive, a few characteristics, such as the contact ratio, the sliding coefficient, and the contact and bending stresses, of this drive are analyzed. A comparison study of these characteristics with the involute gear drive is also carried out. The influences of design parameters including the number of teeth and the pressure angle on the contact and bending stresses are studied. The following conclusions are achieved: the contact ratio of the cosine gear drive is about 1.2 to 1.3, which is reduced by about 20% in comparison with that of the involute gear drive. The sliding coefficient of the cosine gear drive is smaller than that of the involute gear drive. The contact and bending stresses of the cosine gear drive are lower than those of the involute gear drive. The contact and bending stresses decrease with the growth of the number of teeth and the pressure angle.
文摘The structure of cylindrical tri-sine oscillating tooth gear drive is presented. Based on the space meshing theory, equations of meshing and tooth profile are established and its meshing theory is studied. Using Pro/E, this system is modeled and simulated,which is compared with the above-established equations.
基金This project is supported by National Natural Science Foundation of China (No.50175011).
文摘From the general formula for calculating the efficiency of planetary geartrains, the efficiency of the double crank ring-plate-type pin-cycloidal gear planetary drive isderived. To prove the theory, an experimental study has been conducted. The tested value of theefficiency of a sample set of the new-type drive in the experiment agrees with the calculated one.It shows that the new-type drive is of not merely high bearing capacity, but also quite highefficiency.
基金supported by the National Natural Science Foundations of China(Nos.51105194,51375226)the Fundamental Research Funds for the Central Universities(No.NS2015049)
文摘Mesh stiffness is one of important base parameters of face gear dynamic studies.However,a calculation solution of mesh stiffness of face gear drives is not to be constructed due to complex geometric flakes of face gear teeth.Thus,a calculation solution of mesh stiffness of face gear drives with a spur gear,which is based on the proposed equivalent face gear teeth and Ishikawa model,is constructed,and the influence of contact effects on mesh stiffness of face gear drives is investigated.The results indicate the mesh stiffness of face gear drives is sensitive to contact effects under heavy loaded operating conditions,specially.These contributions will benefit to improve dynamic studies of face gear drives.
基金Nova Trading Company from Torun and Rywal-RHC Company from Lublin for the financial support owing to which it was possible to perform the research study and tests presented in the compilation.
文摘The friction drive elevators the influence of the braking distance has very high significance to meet certain safety regulations and comfort.During the emergency braking the delay for the system a frame and a cabin should be within the range from 0.2 to 9.81 m/s~2.However,there are no specialist literatures regarding the issues connected with emergency braking of elevating devices either.The results of the own empirical research work are presented regarding the influence of design changes on the working parameters of the friction drive elevator gears.ASG100,KB 160,PP16,PR2000UD and CHP2000 types of safety progressive gears are analyzed.ASG100,KB 160,PP16,PR2000UD type progressive gears are already produced by European manufacturers.CHP2000 type gears are established as the alternative option for the already existing solutions.The unique cam system has been used in the CHP 2000 gears.The cam leverage gives the chance to unblock,in a very easy way,the clamed gears after braking.Thus,it is a key aspect to perform laboratory tests over the braking process of a newly created solution.The proper value of the braking distance has a significant influence on the value of delay in terms of binding standards.The influence of loading on the effective braking distance and the value of the falling elevator cabin speed are analyzed and the results are presented.The results presented are interesting from lift devices operation and a new model of CHP 2000progressive gear point of view.
文摘This paper presents the method of model based incipientfault detection for gear drives, this method is based on parity space method It can generate the robust residual that is maximally sensitive to the fault caused by the change of the parameters. The example of simulation shows the application of the method and the residual waves have different characteristics due to different parameter changes; one can detect and isolate the fault based on the different characteristics.
基金2022 Liaoning Provincial Natural Science Foundation Plan(Yingkou Joint Fund),New Style Design and Optimization of Bore Head Drive Structure(Fund No.:2022-YKLH-17)In 2023,the key scientific research project of Yingkou Institute of Technology is the Design and Optimization of Smoke Drainage Pipe for New Mining Truck(Fund No.:ZDIL202306)2021 Natural Science Foundation ofLiaoning Province(Yingkou Joint Fund)Research on Dynamic Characteristics of Damped Vertical Shack(Fund No.:2021-YKLH-08).
文摘This paper takes the boring head of 20 roll mill as the research object,optimizes the vibration inside the boring head through a differential damping structure,and then conducts the 3 d model inside the boring head through SolidWorks,and checks the interference of the boring head model.Finally,Ansys workbench finite element analysis software is used to analyze and verify the vibration damping characteristics of the differential damping structure.
基金supported by the Beijing Natural Science Foundation(Grant No.3172017)the National Natural Science Foundation of China(Grant No.11272171)Education Ministry Doctoral Fund of China(Grant No.20120002110070)
文摘Accurate description of the elastic deformation of the flexspline is the foundation for optimization design of the structure and conjugate profiles of the harmonic drive gear. This paper proposed an experimental method to investigate the effect of the driving speed on the deformation characteristics of the flexspline. First, an experimental apparatus that integrates a special-fabricated micro-displacement platform and a pair of laser displacement sensors is developed, and the radial displacement of the flexspline is measured in vertical and horizontal directions. Next, the deformation analyses of the flexspline at different driving speeds are performed with our method and the conventional method, and the comparison results reveal that the radial displacement of the flexspline is actually composed of both harmonic and random components, and the amplitude decreases and tends to zero with the increase of the driving speed, especially near the closed end of the flexspline. Last, the mechanisms of the inherent multi-frequency and amplitude attenuation characteristics of the radial displacement of the flexspline are discussed. It is indicated that the impact and friction existing in the flexible bearing of the wave generator is likely responsible for the existence of the random component, and the assumption of linear distribution of the ftexspline deformation along the rotating axis is invalid under high speed condition. Our research promotes the further study on the contact-impact problem of the flexible bearing of the wave generator and the transfer characteristic of the elastic deformation of the flexspline.
文摘The coupling of the local contact problems between the components and the deformation of the components in the mechanical system were discovered.A series of coordinate systems have been founded to describe the mechanical system with the contact problems.The method of isolating the boundary of contact body from others has been used to describe the constraint between the contacting points.A more generalized static mechanics model of the mechanical system with the contact problems has been founded through the principle of virtual work.As an application,the model was used to study the multi_teeth engagement problems in the inner meshed planet gear systems.The stress distribution of contact gears was got.A test has verified that the static contact model and the computational method are right.
基金supported by the National Natural Science Foundation of China(Grant No.11272171)the Beijing Natural Science Foundation(Grant No.3132030)the Education Ministry Doctoral Fund of China(Grant No.20120002110070)
文摘A lack of accurate description of the meshing characteristics and the corresponding frictional mechanism of the harmonic drive gear has limited progress toward modeling the hysteresis stiffness. This paper presents a method for detection and quantification of the meshing characteristics of the harmonic drive gear based on computer vision. First, an experimental set-up that integrates a high speed camera system with a lighting system is developed, and the image processing is adopted to extract and polish the tooth profiles of the meshed teeth pairs in each acquired video sequence. Next, a physical-mathematical model is established to determine the relative positions of the selected tooth pair in the process of the gear engagement, and the combined standard uncertainty is utilized to evaluate the accuracy of the calculated kinematics parameters. Last, the kinematics analysis of the gear engagement under the ultra-low speed condition is performed with our method and previous method, and the influence of the input rotational speed on the results is examined. The results validate the effectiveness of our method, and indicate that the conventional method is not available in the future friction analysis. It is also shown that the engaging-in phase is approximately a uniform motion process, the engaging-out phase is a variable motion process, and these characteristics remain unchanged with the variation of the input rotational speed. Our method affords the ability to understand the frictional mechanism on the meshed contact surfaces of the harmonic drive gear, and also allows for the dynamic monitoring of the meshing properties.