The manufacturing accuracy of ultra-precision master gears signifies the technological capability of the ultra-precision gear.Currently,there is little report about the manufacturing technologies of ultra-precision ma...The manufacturing accuracy of ultra-precision master gears signifies the technological capability of the ultra-precision gear.Currently,there is little report about the manufacturing technologies of ultra-precision master gears at home and aboard.In order to meet the requirement of grinding ultra precision master gear,the gear grinder with flat-faced wheel Y7125 is chosen as the object machine tool and the geometric model of its precision generating part,the involute cam,is established.According to the structure of the involute cam,the effective working section and its adjustable range of the cam are determined,and the mathematical expressions of the effects of comprehensive eccentricity of the involute cam on gear profile deviations are derived.According to the primary harmonic trends of the deviation curve,it is shown that gear profile form and slope deviations in different work generating sections of the involute cam are different which the latter changes with the cam eccentricity obviously.Then,the issues of extreme values and methods of error compensation are studied and the conclusion that large adjustable range is benefit to search the optimal involute-cam section which is responding to the minimum gear profile deviations is obtained.A group of examples are calculated by choosing master gears with d=120 mm and m=2-6 mm and an involute cam with base diameter djcam =117 mm.And it is found that the maximum gear profile deviation counts for no more than 5% of the cam eccentricity after error compensation.A gear-grinding experiment on the master gear with m=2 mm is conducted by choosing different sections of the involute cam and the differences of gear profile deviations then the existence of the cam eccentricity are verified.The research discloses the rule of gear profile deviations caused by the comprehensive eccentricity of the involute cam and provides the theoretical guidance and the processing methods for grinding profile of the ultra precision master gear.展开更多
A new method named orthogonal two-way link-shift here has been proposed.Based on the method and a standard involute gear hob, a specific gear tooth profile (including anarbitrary gear tooth profile and a modified invo...A new method named orthogonal two-way link-shift here has been proposed.Based on the method and a standard involute gear hob, a specific gear tooth profile (including anarbitrary gear tooth profile and a modified involute gear tooth profile) can be generated on aCNC(computer numerical control) bobbing machine. Computer simulation has been carried out, and theresults prove that the method is right and practicable. So, the fabrication costs can be greatlydecreased than before. The new method has momentous significance to realize gear's optimizedmodification under different work conditions.展开更多
Common definition and calculating expressions of end-surface contact ratiofor all type of gears are put forward, and with calculation expressions for involute gears,micro-segments profile gears, and sine-curved profil...Common definition and calculating expressions of end-surface contact ratiofor all type of gears are put forward, and with calculation expressions for involute gears,micro-segments profile gears, and sine-curved profile gears being discussed. The end-surface contactratio of gears is defined as the ratio of the action angle (the rotation angle of gear from gear-into gear-out for one pair of teeth) to the rotation angle per pitch (or central angle per tooth).According to the theory of gearing, equation of the meshing line can be deduced from the toothprofiles of basic rack. Having obtained the equation of the meshing line, and being given theaddendum outline of the gears, the contact ratio can be calculated with the calculation expressions.For the involute gears, this definition has same effect as the well-known definition: ratio of thecontact line to the base pitch. This definition of contact ratio is also suitable to othernon-involute gears, such as micro-segments profile gears, sine-curved profile gears, and can givemore reliable results.展开更多
When the noncircular gear pair is applied to the continuously variable transmission (CVT) with gear, the transmission ratio function is discontinuous. In accordance with this unique characteristic, a new approach to...When the noncircular gear pair is applied to the continuously variable transmission (CVT) with gear, the transmission ratio function is discontinuous. In accordance with this unique characteristic, a new approach to design and analyze noncircular gears with discontinuous pitch curve is proposed. The design courses of various noncircular gear pairs with discontinuous pitch curve are unified based on the numerical algorithm of spline fitting and "fairing boundary condition". According to the particularity of discontinuous pitch curve, the rules and procedures for teeth distribution are recommended. It is explained in detail why the undercut is formed and how to manage the undercut based on meshing principle.In addition, the calculation formulas for each tooth profile segment are also derived. If the tooth profile data are calculated, the measurement and the incision process for noncircular gear can be conducted and the CAD simulation can be achieved easily. To ensure the continuity of the transmission, the transmission interference of the tooth which is located at the pitch curve joint point is managed by utilizing Bezier curve with CAD software. And the contact ratio of gear pair is obtained. The case study shows that this approach is successful and opens up a new way for the design of noncircular gear.展开更多
In order to enhance the bearing capacity of non-circular gear pair, the non-circular gear pair with double generating angles is proposed based on the design idea of unsymmetrical gear with double pressure angles. The ...In order to enhance the bearing capacity of non-circular gear pair, the non-circular gear pair with double generating angles is proposed based on the design idea of unsymmetrical gear with double pressure angles. The tooth profile is designed by generating cutting theory, the pure rolling mathematic model that the center line of unsymmetrical rack roll along non-circular pitch curve is built, the digital model of non-circular gear with double generating angles is created through the second development method of CAD software, and then the drive characteristic and tooth strength are analyzed. The results show that the design method for double generating angles non-circular gear proposed in this paper is feasible, which is significant to improve the bearing capacity of non-circular gear pair.展开更多
基金supported by National Hi-tech Research and Development Program of China (863 Program,Grant No.2008AA042506)
文摘The manufacturing accuracy of ultra-precision master gears signifies the technological capability of the ultra-precision gear.Currently,there is little report about the manufacturing technologies of ultra-precision master gears at home and aboard.In order to meet the requirement of grinding ultra precision master gear,the gear grinder with flat-faced wheel Y7125 is chosen as the object machine tool and the geometric model of its precision generating part,the involute cam,is established.According to the structure of the involute cam,the effective working section and its adjustable range of the cam are determined,and the mathematical expressions of the effects of comprehensive eccentricity of the involute cam on gear profile deviations are derived.According to the primary harmonic trends of the deviation curve,it is shown that gear profile form and slope deviations in different work generating sections of the involute cam are different which the latter changes with the cam eccentricity obviously.Then,the issues of extreme values and methods of error compensation are studied and the conclusion that large adjustable range is benefit to search the optimal involute-cam section which is responding to the minimum gear profile deviations is obtained.A group of examples are calculated by choosing master gears with d=120 mm and m=2-6 mm and an involute cam with base diameter djcam =117 mm.And it is found that the maximum gear profile deviation counts for no more than 5% of the cam eccentricity after error compensation.A gear-grinding experiment on the master gear with m=2 mm is conducted by choosing different sections of the involute cam and the differences of gear profile deviations then the existence of the cam eccentricity are verified.The research discloses the rule of gear profile deviations caused by the comprehensive eccentricity of the involute cam and provides the theoretical guidance and the processing methods for grinding profile of the ultra precision master gear.
基金This project is supported by National Natural Science Foundation of China (No.59905018) Provincial Excellent Young Scientist Foundation of Shandong (No.01BS033).
文摘A new method named orthogonal two-way link-shift here has been proposed.Based on the method and a standard involute gear hob, a specific gear tooth profile (including anarbitrary gear tooth profile and a modified involute gear tooth profile) can be generated on aCNC(computer numerical control) bobbing machine. Computer simulation has been carried out, and theresults prove that the method is right and practicable. So, the fabrication costs can be greatlydecreased than before. The new method has momentous significance to realize gear's optimizedmodification under different work conditions.
文摘Common definition and calculating expressions of end-surface contact ratiofor all type of gears are put forward, and with calculation expressions for involute gears,micro-segments profile gears, and sine-curved profile gears being discussed. The end-surface contactratio of gears is defined as the ratio of the action angle (the rotation angle of gear from gear-into gear-out for one pair of teeth) to the rotation angle per pitch (or central angle per tooth).According to the theory of gearing, equation of the meshing line can be deduced from the toothprofiles of basic rack. Having obtained the equation of the meshing line, and being given theaddendum outline of the gears, the contact ratio can be calculated with the calculation expressions.For the involute gears, this definition has same effect as the well-known definition: ratio of thecontact line to the base pitch. This definition of contact ratio is also suitable to othernon-involute gears, such as micro-segments profile gears, sine-curved profile gears, and can givemore reliable results.
文摘When the noncircular gear pair is applied to the continuously variable transmission (CVT) with gear, the transmission ratio function is discontinuous. In accordance with this unique characteristic, a new approach to design and analyze noncircular gears with discontinuous pitch curve is proposed. The design courses of various noncircular gear pairs with discontinuous pitch curve are unified based on the numerical algorithm of spline fitting and "fairing boundary condition". According to the particularity of discontinuous pitch curve, the rules and procedures for teeth distribution are recommended. It is explained in detail why the undercut is formed and how to manage the undercut based on meshing principle.In addition, the calculation formulas for each tooth profile segment are also derived. If the tooth profile data are calculated, the measurement and the incision process for noncircular gear can be conducted and the CAD simulation can be achieved easily. To ensure the continuity of the transmission, the transmission interference of the tooth which is located at the pitch curve joint point is managed by utilizing Bezier curve with CAD software. And the contact ratio of gear pair is obtained. The case study shows that this approach is successful and opens up a new way for the design of noncircular gear.
基金Supported by National Natural Science Foundation of China(No.51275147)
文摘In order to enhance the bearing capacity of non-circular gear pair, the non-circular gear pair with double generating angles is proposed based on the design idea of unsymmetrical gear with double pressure angles. The tooth profile is designed by generating cutting theory, the pure rolling mathematic model that the center line of unsymmetrical rack roll along non-circular pitch curve is built, the digital model of non-circular gear with double generating angles is created through the second development method of CAD software, and then the drive characteristic and tooth strength are analyzed. The results show that the design method for double generating angles non-circular gear proposed in this paper is feasible, which is significant to improve the bearing capacity of non-circular gear pair.