The dynamic responses of roller gear indexing cam mechanism are investigated .With applying Lagarange equation and Gear method,motion equations of this mechanism including clearance,motor characteristic,torsion flexib...The dynamic responses of roller gear indexing cam mechanism are investigated .With applying Lagarange equation and Gear method,motion equations of this mechanism including clearance,motor characteristic,torsion flexibility are developed and solved.The results show that clearance affects primarily the response on turret,and has little effects on the responses on rotary table.At the same time,the velocity fluctuation of motor shaft is not serious for the existence of inertia of reducer,and the high frequency of velocity fluctuation of camshaft is related with the torsion stiffness of shaft and the clearance between pairs.展开更多
In gear transmission,temperature rise has a non-negligible impact on the accuracy,noise and transmission efficiency.However,there is no relevant research on the temperature rise of the anti-backlash single-roller enve...In gear transmission,temperature rise has a non-negligible impact on the accuracy,noise and transmission efficiency.However,there is no relevant research on the temperature rise of the anti-backlash single-roller enveloping hourglass worm(ASEHW)gear.To solve this problem,based on tribology principle and Hertz contact theory,the thermal power calculation method of the ASEHW gear was proposed for the first time and thermal analysis was carried out by Ansys software.The bulk temperature of the ASEHW gear under four different rotating speed(300 r/min,600 r/min,900 r/min,1200 r/min)is calculated.The main factors causing temperature rise of the ASEHW gear are analyzed theoretically.Meanwhile,an experimental study is performed to verify the simulation results and validate the theory methods.The theory presented in this paper provides a solution for the thermal power calculation of ASEHW gear.This research provides a theoretical basis for further optimization of ASEHW gear.展开更多
Torsional vibration of roller oscillating tooth gear drive (ROTGD) is studied in this paper. On the basis of conservation law for kinetic energy and potential energy, the mathematical expressions are developed which d...Torsional vibration of roller oscillating tooth gear drive (ROTGD) is studied in this paper. On the basis of conservation law for kinetic energy and potential energy, the mathematical expressions are developed which describe transformation of moment of inertia of inertial components into input shaft. Also, the formula is derived which expresses transformation of contact stiffness of elastic components into input shaft torsional stiffness. Besides, torsional vibration model of ROTGD is presented by using the transfer matrix method, and natural frequencies and vibration mode shapes are determined. Eventually, an example is given.展开更多
Conventional fault tree and reliability analysis do not reflect the characteristics of basic events as non stationary and ergodic process. To overcome these drawbacks, theory of fuzzy sets is employed to run fault tre...Conventional fault tree and reliability analysis do not reflect the characteristics of basic events as non stationary and ergodic process. To overcome these drawbacks, theory of fuzzy sets is employed to run fault tree analysis(FTA) of roller oscillating tooth gear drive(ROTGD), the relative frequencies of basic events are considered as symmetrical normal fuzzy numbers, from the logical relationship between different events in the fault tree and fuzzy operators AND and OR, fuzzy probability of top event is solved. Finally, an example is given to demonstrate a real ROTGD system.展开更多
The high-speed reciprocating motion of a detaching roller limits the velocity of a cotton comber and affects the quality of comber slivers. The article has proposed a controllable time-sharing unidirectional hybrid dr...The high-speed reciprocating motion of a detaching roller limits the velocity of a cotton comber and affects the quality of comber slivers. The article has proposed a controllable time-sharing unidirectional hybrid drive mechanism after analyzing detaching roller's current numerical control drive method. The analysis focuses on the detaching roller motion required according to cotton comber's velocity and process. The double-servo motors of the mechanism consists of differential gear trains. The mechanism addresses the problem of increased servo motor power,and failure of promptly responded to the positive inversion process of mechanism driven by servo motors. A velocity calculation model of the detaching roller controllable drive mechanism will be generated by using superposition method and design of differential gear trains. The accuracy of the model will be verified using the test platform. This study has presented a reliable and practical high-speed drive mechanism and can be a reference to future studies on high-speed reciprocating motion drive.展开更多
文摘The dynamic responses of roller gear indexing cam mechanism are investigated .With applying Lagarange equation and Gear method,motion equations of this mechanism including clearance,motor characteristic,torsion flexibility are developed and solved.The results show that clearance affects primarily the response on turret,and has little effects on the responses on rotary table.At the same time,the velocity fluctuation of motor shaft is not serious for the existence of inertia of reducer,and the high frequency of velocity fluctuation of camshaft is related with the torsion stiffness of shaft and the clearance between pairs.
基金National Natural Science Foundation of China(Grant No.51875479)Innovation Fund of Postgraduate of Xihua University,China(Grant No.ycjj2019040).
文摘In gear transmission,temperature rise has a non-negligible impact on the accuracy,noise and transmission efficiency.However,there is no relevant research on the temperature rise of the anti-backlash single-roller enveloping hourglass worm(ASEHW)gear.To solve this problem,based on tribology principle and Hertz contact theory,the thermal power calculation method of the ASEHW gear was proposed for the first time and thermal analysis was carried out by Ansys software.The bulk temperature of the ASEHW gear under four different rotating speed(300 r/min,600 r/min,900 r/min,1200 r/min)is calculated.The main factors causing temperature rise of the ASEHW gear are analyzed theoretically.Meanwhile,an experimental study is performed to verify the simulation results and validate the theory methods.The theory presented in this paper provides a solution for the thermal power calculation of ASEHW gear.This research provides a theoretical basis for further optimization of ASEHW gear.
文摘Torsional vibration of roller oscillating tooth gear drive (ROTGD) is studied in this paper. On the basis of conservation law for kinetic energy and potential energy, the mathematical expressions are developed which describe transformation of moment of inertia of inertial components into input shaft. Also, the formula is derived which expresses transformation of contact stiffness of elastic components into input shaft torsional stiffness. Besides, torsional vibration model of ROTGD is presented by using the transfer matrix method, and natural frequencies and vibration mode shapes are determined. Eventually, an example is given.
文摘Conventional fault tree and reliability analysis do not reflect the characteristics of basic events as non stationary and ergodic process. To overcome these drawbacks, theory of fuzzy sets is employed to run fault tree analysis(FTA) of roller oscillating tooth gear drive(ROTGD), the relative frequencies of basic events are considered as symmetrical normal fuzzy numbers, from the logical relationship between different events in the fault tree and fuzzy operators AND and OR, fuzzy probability of top event is solved. Finally, an example is given to demonstrate a real ROTGD system.
基金National Basic Research Program of China(973 Program)(No.2010CB334711)the Applied Basic Research of China National Textile and Apparel Council (Textile Vision Science and Education Fund of China in 2012)
文摘The high-speed reciprocating motion of a detaching roller limits the velocity of a cotton comber and affects the quality of comber slivers. The article has proposed a controllable time-sharing unidirectional hybrid drive mechanism after analyzing detaching roller's current numerical control drive method. The analysis focuses on the detaching roller motion required according to cotton comber's velocity and process. The double-servo motors of the mechanism consists of differential gear trains. The mechanism addresses the problem of increased servo motor power,and failure of promptly responded to the positive inversion process of mechanism driven by servo motors. A velocity calculation model of the detaching roller controllable drive mechanism will be generated by using superposition method and design of differential gear trains. The accuracy of the model will be verified using the test platform. This study has presented a reliable and practical high-speed drive mechanism and can be a reference to future studies on high-speed reciprocating motion drive.