期刊文献+
共找到713篇文章
< 1 2 36 >
每页显示 20 50 100
Design and Analysis of Power and Transmission System of Downhole Pure Electric Command Vehicle
1
作者 Md Jahangir Alam Md Shahriar Sujan +1 位作者 Md. Al Imran Tapu Joy Howlader 《Journal of Transportation Technologies》 2024年第1期31-52,共22页
Electric vehicles use electric motors, which turn electrical energy into mechanical energy. As electric motors are conventionally used in all the industry, it is an established development site. It’s a mature technol... Electric vehicles use electric motors, which turn electrical energy into mechanical energy. As electric motors are conventionally used in all the industry, it is an established development site. It’s a mature technology with ideal power and torque curves for vehicular operation. Conventional vehicles use oil and gas as fuel or energy storage. Although they also have an excellent economic impact, the continuous use of oil and gas threatened the world’s reservation of total oil and gas. Also, they emit carbon dioxide and some toxic ingredients through the vehicle’s tailpipe, which causes the greenhouse effect and seriously impacts the environment. So, as an alternative, electric car refers to a green technology of decarbonization with zero emission of greenhouse gases through the tailpipe. So, they can remove the problem of greenhouse gas emissions and solve the world’s remaining non-renewable energy storage problem. Pure electric vehicles (PEV) can be applied in all spheres, but their special implementation can only be seen in downhole operations. They are used for low noise and less pollution in the downhole process. In this study, the basic structure of the pure electric command vehicle is studied, the main components of the command vehicle power system, namely the selection of the drive motor and the power battery, are analyzed, and the main parameters of the drive motor and the power battery are designed and calculated. The checking calculation results show that the power and transmission system developed in this paper meets the design requirements, and the design scheme is feasible and reasonable. 展开更多
关键词 Pure Electric Vehicles TRANSMISSION GEARS Electronic Differential Control Algorithms
下载PDF
Examining the intrinsic foot muscles'capacity to modulate plantar flexor gearing and ankle joint contributions to propulsion in vertical jumping
2
作者 Ross Smith Glen Lichtwark +1 位作者 Dominic Farris Luke Kelly 《Journal of Sport and Health Science》 SCIE CAS CSCD 2023年第5期639-647,F0003,共10页
Background:During human locomotion,a sufficiently stiff foot allows the ankle plantar flexors to generate large propulsive powers.Increasing foot stiffness(e.g.,via a carbon plate)increases the ankle’s external momen... Background:During human locomotion,a sufficiently stiff foot allows the ankle plantar flexors to generate large propulsive powers.Increasing foot stiffness(e.g.,via a carbon plate)increases the ankle’s external moment arm in relation to the internal moment arm(i.e.,increasing gear ratio),reduces plantar flexor muscles’shortening velocity,and enhances muscle force production.In contrast,when activation of the foot’s intrinsic muscles is impaired,there is a reduction in foot and ankle work and metatarsophalangeal joint stiffness.We speculated that the reduced capacity to actively control metatarsophalangeal joint stiffness may impair the gearing function of the foot at the ankle.Methods:We used a tibial nerve block to examine the direct effects of the intrinsic foot muscles on ankle joint kinetics,in vivo medial gastrocnemius’musculotendinous dynamics,and ankle gear ratio on 14 participants during maximal vertical jumping.Results:Under the nerve block,the internal ankle plantar flexion moment decreased(p=0.004)alongside a reduction in external moment arm length(p=0.021)and ankle joint gear ratio(p=0.049)when compared to the non-blocked condition.Although medial gastrocnemius muscle-tendon unit and fascicle velocity were not different between conditions,the Achilles tendon was shorter during propulsion in the nerve block condition(p<0.001).Conclusion:In addition to their known role of regulating the energetic function of the foot,our data indicate that the intrinsic foot muscles also act to optimize ankle joint torque production and leverage during the propulsion phase of vertical jumping. 展开更多
关键词 Ankle biomechanics Ankle gearing Foot biomechanicsTagedEnd
下载PDF
TEST AND CONTROL SYSTEM DEVELOPMENT AND APPLICATION OF LANDING GEAR DROP TEST RIG 被引量:3
3
作者 薛彩军 戚文刚 聂宏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第2期145-151,共7页
A control and test system of a landing gear drop test rig is developed considering the drop test specifica- tions for the "Seagull 300" multi-functional amphibious airplane. In order to realize the automation of dro... A control and test system of a landing gear drop test rig is developed considering the drop test specifica- tions for the "Seagull 300" multi-functional amphibious airplane. In order to realize the automation of drop test process, a servo system is proposed and programmable logic controller(PLC) technology is used. Several key technologies for measuring the horizontal load, the vertical load and the transient rotational speed are studied. According to the requirements of CCAR-23-R3, the drop test of landing gears of the "Seagull 300" airplane is accomplished. Test results show that the system has a high accuracy of data collection. The system is stable and reliable. The drop test satisfies the requirements of the drop test specifications and the results can be used as the certification of airworthiness for this kind of airplane. 展开更多
关键词 drop test test and control system AIRWORTHINESS landing gears
下载PDF
Research on Cavitation Characteristics and Influencing Factors of Herringbone Gear Pump
4
作者 Jinlong Yang Kwang-Hee Lee Chul-Hee Lee 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2917-2946,共30页
Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of ... Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of the pump.Research on pump cavitation mainly focuses on mixed flow pumps,jet pumps,external spur gear pumps,etc.However,there are few cavitation studies on external herringbone gear pumps.In addition,pumps with different working principles significantly differ in the flow and complexity of the internal flow field.Therefore,it is urgent to study the cavitation characteristics of external herringbone gear pumps.Compared with experimentalmethods,visual research and cavitation area identification are achieved through computation fluid dynamic(CFD),and changing the boundary conditions and shape of the gear rotor is easier.The simulation yields a head error of only 0.003%under different grid numbers,and the deviation between experimental and simulation results is less than 5%.The study revealed that cavitation causes flow pulsation at the outlet,and the cavitation serious area is mainly distributed in the meshing gap and meshing area.Cavitation can be inhibited by reducing the speed,increasing the inlet pressure,and changing the helix angle can be achieved.For example,when the inlet pressure is 5 bar,the maximumgas volume fraction in themeshing area is less than 50%.These results provide a reference for optimizing the design and finding the optimal design parameters to reduce or eliminate cavitation. 展开更多
关键词 Herringbone gear pump CAVITATION rotating speed inlet pressure helix angle TwinMesh
下载PDF
Contact Stress Reliability Analysis Model for Cylindrical Gear with Circular Arc Tooth Trace Based on an Improved Metamodel
5
作者 Qi Zhang Zhixin Chen +5 位作者 Yang Wu Guoqi Xiang Guang Wen Xuegang Zhang Yongchun Xie Guangchun Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期593-619,共27页
Although there is currently no unified standard theoretical formula for calculating the contact stress of cylindrical gears with a circular arc tooth trace(referred to as CATT gear),a mathematical model for determinin... Although there is currently no unified standard theoretical formula for calculating the contact stress of cylindrical gears with a circular arc tooth trace(referred to as CATT gear),a mathematical model for determining the contact stress of CATT gear is essential for studying how parameters affect its contact stress and building the contact stress limit state equation for contact stress reliability analysis.In this study,a mathematical relationship between design parameters and contact stress is formulated using the KrigingMetamodel.To enhance the model’s accuracy,we propose a new hybrid algorithm that merges the genetic algorithm with the Quantum Particle Swarm optimization algorithm,leveraging the strengths of each.Additionally,the“parental inheritance+self-learning”optimization model is used to fine-tune the KrigingMetamodel’s parameters.Following this,amathematicalmodel for calculating the contact stress of Variable Hyperbolic Circular-Arc-Tooth-Trace(VH-CATT)gears using the optimized Kriging model was developed.We then examined how different gear parameters affect the VH-CATT gears’contact stress.Our simulation results show:(1)Improvements in R2,RMSE,and RMAE.R2 rose from0.9852 to 0.9974(a 1.22%increase),nearing 1,suggesting the optimized Kriging Metamodel’s global error is minimized.Meanwhile,RMSE dropped from3.9210 to 1.6492,a decline of 57.94%.The global error of the GA-IQPSO-Kriging algorithm was also reduced,with RMAE decreasing by 58.69%from 0.1823 to 0.0753,showing the algorithm’s enhanced precision.In a comparison of ten experimental groups selected randomly,the GA-IQPSO-Kriging and FEM-based contact analysis methods were used to measure contact stress.Results revealed a maximum error of 12.11667 MPA,which represents 2.85%of the real value.(2)Several factors,including the pressure angle,tooth width,modulus,and tooth line radius,are inversely related to contact stress.The descending order of their impact on the contact stress is:tooth line radius>modulus>pressure angle>tooth width.(3)Complex interactions are noted among various parameters.Specifically,when the tooth line radius interacts with parameters such as pressure angle,tooth width,and modulus,the resulting stress contour is nonlinear,showcasing amultifaceted contour plane.However,when tooth width,modulus,and pressure angle interact,the stress contour is nearly linear,and the contour plane is simpler,indicating a weaker coupling among these factors. 展开更多
关键词 CATT gear contact stress finite element method METAMODEL hybrid algorithm influencing factors
下载PDF
Application of Isogeometric Analysis Method in Three-Dimensional Gear Contact Analysis
6
作者 Long Chen Yan Yu +2 位作者 Yanpeng Shang Zhonghou Wang Jing Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期817-846,共30页
Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a thre... Gears are pivotal in mechanical drives,and gear contact analysis is a typically difficult problem to solve.Emerging isogeometric analysis(IGA)methods have developed new ideas to solve this problem.In this paper,a threedimensional body parametric gear model of IGA is established,and a theoretical formula is derived to realize single-tooth contact analysis.Results were benchmarked against those obtained from commercial software utilizing the finite element analysis(FEA)method to validate the accuracy of our approach.Our findings indicate that the IGA-based contact algorithmsuccessfullymet theHertz contact test.When juxtaposed with the FEA approach,the IGAmethod demonstrated fewer node degrees of freedomand reduced computational units,all whilemaintaining comparable accuracy.Notably,the IGA method appeared to exhibit consistency in analysis accuracy irrespective of computational unit density,and also significantlymitigated non-physical oscillations in contact stress across the tooth width.This underscores the prowess of IGA in contact analysis.In conclusion,IGA emerges as a potent tool for addressing contact analysis challenges and holds significant promise for 3D gear modeling,simulation,and optimization of various mechanical components. 展开更多
关键词 Contact analysis involute gear isogeometric analysis finite element analysis
下载PDF
Expert System for the Design of Single Speed Gear Boxes
7
作者 黄心渊 万耀青 +1 位作者 项红 王文清 《Journal of Beijing Institute of Technology》 EI CAS 1992年第1期35-41,共7页
Based on the characteristic peculiarities of mechanical design expert systems (MDES), the design process pf gear box and its components is introduced and the gear box design expert systems (GBES)is established. GBES e... Based on the characteristic peculiarities of mechanical design expert systems (MDES), the design process pf gear box and its components is introduced and the gear box design expert systems (GBES)is established. GBES employs the methods of knowledge representation to indicate the knowledge-unit-rule-process, table-vector-process. By taking the advantage of knowledge unit's indicator, it can make the units of knowledge base to to combine to form a whole in the feature of trees and nets so that it can give deduction conveniently. The knowledge base of GBES is organized in hierarchy, which provides the efficient managerial systems of knowledge base. It makes the knowledge base convenient greatly for establishing and using. The assistant modules of GBES are written in FORTRAN and the part of expert systems is written in LISP. It explains the I/O among each module and the forms of independent application. The GBES systems have been put into preliminary, use in practice. 展开更多
关键词 OPTIMIZATION CAD gear box expert system
下载PDF
Stability Analysis of Nonlinear Models of Nose Landing Gear Shimmy
8
作者 Jiacai Zhou Yanying Zhao +1 位作者 Qiqi Li Longhua Zhou 《World Journal of Engineering and Technology》 2024年第1期103-116,共14页
Shimmy can reduce the service life of the nose landing gear, affect ride comfort, and even cause fuselage damage leading to aircraft crashes. Taking a light aircraft as the research object, the torsional freedom of la... Shimmy can reduce the service life of the nose landing gear, affect ride comfort, and even cause fuselage damage leading to aircraft crashes. Taking a light aircraft as the research object, the torsional freedom of landing gear around strut axis and lateral deformation of tire are considered. Since the landing gear shimmy is a nonlinear system, a nonlinear mechanical model of the front landing gear shimmy is established. Sobol index method is proposed to analyze the influence of structural parameters on the stability region of the nose landing gear, and Routh-Huritz criterion is used to verify the reliability of the analysis results of Sobol index method. We analyse the effect of torsional stiffness of strut, caster length, rated initial tire inflation pressure, rake angle, and vertical force on the stability region of theront landing gear. And the research shows that the optimization of the torsional stiffness of the strut and the caster length of the nose landing gear should be emphasized, and the influence of vertical force on the stability region of the nose landing gear should be paid attention to. 展开更多
关键词 Nose Landing Gear Shimmy Oscillations STABILITY Sobol Index Method
下载PDF
Time-Varying Mesh Stiffness Calculation and Dynamic Modeling of Spiral Bevel Gear with Spalling Defects
9
作者 Keyuan Li Baijie Qiao +2 位作者 Heng Fang Xiuyue Yang Xuefeng Chen 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第2期143-155,共13页
Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteris... Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteristics of the gear system,which further increases noise and vibration.This paper aims to calculate the TVMS and establish dynamic model of SBG with spalling defect.In this study,a novel analytical model based on slice method is proposed to calculate the TVMS of SBG considering spalling defect.Subsequently,the influence of spalling defect on the TVMS is studied through a numerical simulation,and the proposed analytical model is verified by a finite element model.Besides,an 8-degrees-of-freedom dynamic model is established for SBG transmission system.Incorporating the spalling defect into TVMS,the dynamic responses of spalled SBG are analyzed.The numerical results indicate that spalling defect would cause periodic impact in time domain.Finally,an experiment is designed to verify the proposed dynamic model.The experimental results show that the spalling defect makes the response characterized by periodic impact with the rotating frequency of spalled pinion. 展开更多
关键词 dynamic modeling slice method SPALLING spiral bevel gear time-varying mesh stiffness(TVMS)
下载PDF
Unusual Brain Trauma Injury
10
作者 Diallo Moussa Traoré Youssouf +5 位作者 Kanikomo Drissa Diarra Sounkalo Izoudine B. Koumaré Sogoba Youssouf Sogoba Boubacar Diallo Oumar 《Open Journal of Modern Neurosurgery》 2024年第3期218-227,共10页
Unusual head trauma is rare with various mechanisms of occurrence. The injuries can be similar to those of road accidents but sometimes with significant complexities. The objective was to determine the frequency of th... Unusual head trauma is rare with various mechanisms of occurrence. The injuries can be similar to those of road accidents but sometimes with significant complexities. The objective was to determine the frequency of this pathology in our practice, describe the different mechanisms and report the craniocerebral lesions caused by this type of trauma. Materials and Method: This was a descriptive study with retrospective collection spread over a period of 3 years. After selecting the files, the patients and/or their companions were contacted by telephone to inquire about them and then returned to the consultation for reassessment. Disease history and information were obtained from patients’ medical records. Result: The frequency of this pathology was 1.78% and his incidence was 0.4 cases per month. The average age of the patients was 13.47 years. All the victims were male. 41.17% of patients were in school. The mechanisms of trauma were the hoof blow 47.1%, the horn blow 29.4% and the stone blow 11.7% respectively. 23.5% of patients were confused and 11.7% children were in coma. One patient presented an anisocoria. The motor deficit was present in 5 cases. CT-scan made it possible to highlight a skull depressing fracture 58.8% and confirm a craniocerebral wound in 35.3%. The average time between patient admission to hospital and completion of surgery was 24.5 hours. The surgery had consisted of the trimming of cranio-cerebral wounds, exploration, duroplasty and lifting of skull depressing fracture. After 15 months of follow-up, the evolution was favorable in 53.3%, the morbidity was 33.4% and the mortality 17.6%. Conclusion: These are rare but serious conditions because they are fatal and disabling. An early and multidisciplinary management can hope to have a good favorable. 展开更多
关键词 Brain Trauma Injury Insolite UNUSUAL Skull Depressing Fracture Hoof Kick Horn Blows Stone Bows Motorcycle Gear Lever
下载PDF
Research on Instantaneous Angular Speed Signal Separation Method for Planetary Gear Fault Diagnosis
11
作者 Xinkai Song Yibao Zhang Shuo Zhang 《Modern Mechanical Engineering》 2024年第2期39-50,共12页
Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation... Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains. 展开更多
关键词 Planetary Gear Train Encoder Signal Instantaneous Angular Speed Signal Time-Domain Synchronous Averaging Fault Diagnosis
下载PDF
Research on Three-Dimensional Simulation of the Internal Arc Gear Skiving
12
作者 Xiaoqiang WU Rui XUE +9 位作者 Erkuo GUO Dongzhou JIA Taiyan GONG Zengrong LI Haijun YANG Xiaoxue LI Xin JIANG Shuai DING Yong LIU Shitian LI 《Mechanical Engineering Science》 2024年第1期35-40,共6页
Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relat... Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relationship and positional relationship between the caries knife and the workpiece,the coordinate system of the caries machining was established.With the MATLAB software,the cutting edge model and the blade sweeping surface model of the boring cutter are sequentially established.Boolean operation is performed on the blade swept surface formed by the tooth cutter teeth with time t and the workpiece tooth geometry as well as the undeformed three-dimensional chip geometry model and the instantaneous cogging geometry model are obtained at different times.Through the compare between gear end face simulation tooth profile and the theoretical inner arc tooth profile,we verified the accuracy and rationality of the proposed method. 展开更多
关键词 gear skiving undeformed three-dimensional chips solid modeling
下载PDF
Influence of support stiffness on vibrations of a planet gear system considering ring with flexible support 被引量:5
13
作者 LIU Jing PANG Rui-kun +1 位作者 LI Hong-wu XU Jin 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2280-2290,共11页
Planet gear systems(PGSs)are key components of transmission mechanisms.Structural and material characteristics of gearbox and shaft can affect the support stiffness and vibrations of PGSs.The ring gear flexibility sho... Planet gear systems(PGSs)are key components of transmission mechanisms.Structural and material characteristics of gearbox and shaft can affect the support stiffness and vibrations of PGSs.The ring gear flexibility should affect the vibrations of PGSs too.However,most previous work did not completely consider the effects of the ring gear flexibility on the vibrations of PGSs and flexible supports of ring and sun gears.Thus,this paper presents a flexible-rigid coupling multi-body dynamic(FMBD)model for a PGS with the flexible supports and ring gear flexibility.A finite element model of ring gear is established to formulate the ring gear flexibility.The influences of clearance and damping of planet bearings on the vibrations of PGS are considered.The effects of flexible supports and ring gear flexibility on the vibrations of PGS under different moment and speed conditions are studied.The statistical parameters and peak frequencies of PGS from the proposed FMBD and previous rigid multi-body dynamic(RMBD)models are compared.The results denote that the flexible support has a great effect on the vibrations of PGS.This paper can provide some guidance for the support structure design and vibration control for PGSs. 展开更多
关键词 planet gear flexible-rigid coupling flexible supports ring gear flexibility vibrations
下载PDF
A Contact Force Model Considering Meshing and Collision States for Dynamic Analysisin Helical Gear System 被引量:6
14
作者 Dong Xiang Yinhua Shen Yaozhong Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期66-77,共12页
The current research on gear system dynamics mainly utilizes linear spring damping model to calculate the contact force between gears. However, this linear model cannot correctly describe the energy transfer process o... The current research on gear system dynamics mainly utilizes linear spring damping model to calculate the contact force between gears. However, this linear model cannot correctly describe the energy transfer process of collision that often occurs in gear system. Focus on the contact-impact events, this paper proposes an improved gear contact force model for dynamic analysis in helical gear transmission system. In this model, a new factor associated with hysteresis damping is developed for contact-impact state, whereas the traditional linear damping factor is utilized for normal meshing state. For determining the selection strategy of these two damping factors, the fundamental contact mechanics of contact-impact event a ected by supporting forces are analyzed. During this analysis, an e ect factor is proposed for evaluating the influence of supporting forces on collision. Meanwhile, a new restitution of coe cient is deduced for calculating hysteresis damping factor, which suitable for both separation and non-separation states at the end of collision. In addition, the time-varying meshing sti ness(TVMS) is obtained based on the potential energy approach and the slice theory. Finally, a dynamic analysis of a helical gear system is carried out to better understand the contact force model proposed in this paper. The analysis results show that the contribution of supporting forces to the dynamic response of contact-impact event within gear pair is important. The supporting forces and dissipative energy are the main reasons for gear system to enter a steady contact state from repeated contact-impact state. This research proposes an improved contact force model which distinguishes meshing and collision states in gear system. 展开更多
关键词 Contact-impact event Gear transmission Contact force Restitution coe cient Flexible support
下载PDF
Design System of the Two-step Gear Reducer on Case-based Reasoning 被引量:6
15
作者 JI Aimin HUANG Quansheng +1 位作者 XU Huanmin CHEN Zhengming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期671-679,共9页
The design of the two-step gear reducer is a tedious and time-consuming process. For the purpose of improving the efficiency and intelligence of design process, case-based reasoning(CBR) technology was applied to th... The design of the two-step gear reducer is a tedious and time-consuming process. For the purpose of improving the efficiency and intelligence of design process, case-based reasoning(CBR) technology was applied to the design of the two-step gear reducer. Firstly, the current design method for the two-step gear reducer was analyzed and the principle of CBR was described. Secondly, according to the characteristics of the reducer, three key technologies of CBR were studied and the corresponding methods were provided, which are as follows: (a) an object-oriented knowledge representation method, (b) a retrieval method combining the nearest neighbor with the induction indexing, and (c) a case adaptation algorithm combining the revision based on rule with artificial revision. Also, for the purpose of improving the credibility of case retrieval, a new method for determining the weights of characteristics and a similarity formula were presented, which is a combinatorial weighting method with the analytic hierarchy process(AHP) and roughness set theory. Lastly, according to the above analytic results, a design system of the two-step gear reducer on CBR was developed by VC++, UG and Access 2003. A new method for the design of the two-step gear reducer is provided in this study. If the foregoing developed system is applied to design the two-step gear reducer, design efficiency is improved, which enables the designer to release from the tedious design process of the gear reducer so as to put more efforts on innovative design. The study result fully reflects the feasibility and validity of CBR technology in the process of the design of the mechanical parts. 展开更多
关键词 two-step gear reducer case-based reasoning(CBR) weights of characteristics SIMILARITY
下载PDF
Torsional vibration analysis of lathe spindle system with unbalanced workpiece 被引量:5
16
作者 郭瑞 JANG Sung-Hyun CHOI Young-Hyu 《Journal of Central South University》 SCIE EI CAS 2011年第1期171-176,共6页
For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machi... For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machine tool spindle system with geared transmission.By using the elementary method and Runge-Kutta method in Matlab,the eigenvalue problem was solved and the pure torsional vibration responses were obtained and examined.The results show that the spindle system cannot operate in the desired constant rotating speed as far as the gravitational unbalance torque is engaged,so it may cause bad effect on machining accuracy.And the torsional vibration increases infinitely near the resonant frequencies,so the spindle system cannot operate normally during these spindle speed ranges. 展开更多
关键词 unbalanced work piece gravitational unbalance torque torsional vibration spindle system geared transmission
下载PDF
Dynamic characteristics of gear system under different micro-topographies with the same roughness on tooth surface 被引量:4
17
作者 YIN Lei DENG Chun-long +2 位作者 YU Wen-nian SHAO Yi-min WANG Li-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2311-2323,共13页
The topography of gear meshing interfaces is one of the key factors affecting the dynamic characteristics of the gear transmission system.In order to obtain the contact characteristics of meshing gear pair with differ... The topography of gear meshing interfaces is one of the key factors affecting the dynamic characteristics of the gear transmission system.In order to obtain the contact characteristics of meshing gear pair with different surface micro-topographies,an interface feature model and a tribo-dynamics coupling model for the gear system are proposed in this paper.The effects of the gear tooth surface micro-topography on the oil film distribution,contact damping and friction are considered.The time-varying meshing stiffness and the static transmission error are included in the abovementioned models.An exemplary gear pair is analyzed using the proposed models to investigate the influence of the surface micro-topography on the dynamic characteristics of gear system under different micro-topographies and input torque conditions.Simulation results show that the effects of gear tooth micro-topography on the gear dynamic responses(including the friction and the vicious damping at the gear meshing interface and the vibration in the direction of offline of action)are highly dependent on the regularity of tooth surface.The vibration and noise can be significantly controlled by manufacturing a regular gear tooth profiles instead of random profiles. 展开更多
关键词 gear tribo-dynamics coupling model TOPOGRAPHY ROUGHNESS
下载PDF
Super-harmonic resonance of gear transmission system under stick-slip vibration in high-speed train 被引量:4
18
作者 HUANG Guan-hua XU Si-si +1 位作者 ZHANG Wei-hua YANG Cai-jin 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期726-735,共10页
This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with... This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with consideration on the factors including the time-varying system stiffness,the transmission error,the tooth backlash and the self-excited excitation of the wheel-set.The frequency-response equation of the system at super-harmonic resonance is obtained by the multiple scales method,and the stabilities of the system are analyzed using the perturbation theory.Complex nonlinear behaviors of the system including multi-valued solutions,jump phenomenon,hardening stiffness are found.The effects of the equivalent damping and the loads of the system under the stick-slip oscillation are analyzed.It shows that the change of the load can obviously influence the resonance frequency of the system and have little effect on the steady-state response amplitude of the system.The damping of the system has a negative effect,opposite to the load.The synthetic damping of the system composed of meshing damping and equivalent damping may be less than zero when the wheel-set has a large slippage,and the system loses its stability owing to the Hopf bifurcation.Analytical results are validated by numerical simulations. 展开更多
关键词 stick-slip vibration super-harmonic resonance Hopf bifurcation gear transmission system high-speed train
下载PDF
DYNAMIC RESPONSE OF ROLLER GEAR INDEXING CAM SYSTEM CONSIDERING CLEARANCE AND MOTOR CHARACTERISTIC 被引量:4
19
作者 Chang Zongyu Civil Aviation College,Nanjing University of Aeronautics and Astronautics Zhang Ce Yang Yuhu Wang Yuxin Tianjin University 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2001年第2期189-192,共4页
The dynamic responses of roller gear indexing cam mechanism are investigated .With applying Lagarange equation and Gear method,motion equations of this mechanism including clearance,motor characteristic,torsion flexib... The dynamic responses of roller gear indexing cam mechanism are investigated .With applying Lagarange equation and Gear method,motion equations of this mechanism including clearance,motor characteristic,torsion flexibility are developed and solved.The results show that clearance affects primarily the response on turret,and has little effects on the responses on rotary table.At the same time,the velocity fluctuation of motor shaft is not serious for the existence of inertia of reducer,and the high frequency of velocity fluctuation of camshaft is related with the torsion stiffness of shaft and the clearance between pairs. 展开更多
关键词 Roller gear indexing cam mechanism CLEARANCE Motor characteristic Dynamic response
下载PDF
Analysis and modeling of error of spiral bevel gear grinder based on multi-body system theory 被引量:4
20
作者 陈书涵 严宏志 明兴祖 《Journal of Central South University of Technology》 EI 2008年第5期706-711,共6页
Six-axis numerical control spiral bevel gear grinder was taken as the object, multi-body system theory and Denavit-Hartenberg homogeneous transformed matrix (HTM) were utilized to establish the grinder synthesis err... Six-axis numerical control spiral bevel gear grinder was taken as the object, multi-body system theory and Denavit-Hartenberg homogeneous transformed matrix (HTM) were utilized to establish the grinder synthesis error model, and the validity of model was confirmed by the experiment. Additionally, in grinding wheel tool point coordinate system, the errors of six degrees of freedom were simulated when the grinding wheel revolving around C-axis, moving along X-axis and Y-axis. The influence of these six errors on teeth space, helix angle, pitch, teeth profile was discussed. The simulation results show that the angle error is in the range from -0.148 4 tad to -0.241 9 rad when grinding wheel moving along X, Y-axis; the translation error is in the range from 0.866 0 μm to 3.605 3μm when grinding wheel moving along X-axis. These angle and translation errors have a great influence on the helix angle, pitch, teeth thickness and tooth socket. 展开更多
关键词 six-axis GRINDER spiral bevel gear error model ANALYSIS
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部