Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with...Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with high ionic conductivity.The dual network structure BC/P(AM-co-SBMA)gels were formed by a simple one-step polymerization method.The results show that ionic conductivity of BC/P(AM-co-SBMA)GPEs at the room temperature are 3.2×10^(-2) S/cm@1 M H_(2)SO_(4),4.5×10^(-2) S/cm@4 M KOH,and 3.6×10^(-2) S/cm@1 M NaCl,respectively.Using active carbon(AC)as the electrodes,BC/P(AM-co-SBMA)GPEs as both separator and electrolyte matrix,and 4 M KOH as the electrolyte,a symmetric solid supercapacitors(SSC)(AC-GPE-KOH)was assembled and testified.The specific capacitance of AC electrode is 173 F/g and remains 95.0%of the initial value after 5000 cycles and 86.2%after 10,000 cycles.展开更多
Lithium-sulfur(Li-S)batteries have become a promising candidate for advanced energy storage system owing to low cost and high theoretical specific energy.In the last decade,in pursuit of Li-S batteries with enhanced s...Lithium-sulfur(Li-S)batteries have become a promising candidate for advanced energy storage system owing to low cost and high theoretical specific energy.In the last decade,in pursuit of Li-S batteries with enhanced safety and energy density,the investigation on the electrolytes has leaped form liquid organic electrolytes to solid polymer ones.However,such solid-state Li-S battery system is greatly limited by unfavorable ionic conductivity,poor interfacial contact and narrow electrochemical windows on account of the absence of any liquid components.To address these issues,gel polymer electrolytes(GPEs),the incorporation of liquid electrolytes into solid polymer matrixes,have been newly developed.Although the excellent ionic transport and low interfacial resistance provided by GPEs have prompted numerous researchers to make certain progress on high-performance Li-S coins,a comprehensive review on GPEs for Li-S batteries remains vacant.Herein,this review focuses on recent development and progress on GPEs in view of their physical and chemical properties for the applications in Li-S batteries.Studies on the components including solid hosts,liquid solutions and fillers of GPEs are systematically summarized with particular emphasis on the relationship between components and performance.Finally,current challenges and directional outlook for fabricating GPEs-based Li-S batteries with outstanding performance are outlined.展开更多
An amorphous,colorless,and highly transparent star network polymer with a pentaerythritol core linking four PEG-block polymeric arms was synthesized from the poly(ethylene glycol)(PEG),pentaerythritol,and dichlorometh...An amorphous,colorless,and highly transparent star network polymer with a pentaerythritol core linking four PEG-block polymeric arms was synthesized from the poly(ethylene glycol)(PEG),pentaerythritol,and dichloromethane by Williamson reaction.FTIR and ~1H-NMR measurement demonstrated that the polymer repeating units were C[CH_2-OCH_2O-(CH_2CH_2O)_m-CH_2O-(CH_2CH_2O)_n-CH_2O]_4.The polymer host held well mechanical properties for pentaerythritol cross-linking.The gel polymer electrolytes based on Lithium pe...展开更多
Sodium-ion battery is a potential application system for large-scale energy storage due to the advantage of higher nature abundance and lower production cost of sodium-based materials.However,there exist inevitably th...Sodium-ion battery is a potential application system for large-scale energy storage due to the advantage of higher nature abundance and lower production cost of sodium-based materials.However,there exist inevitably the safety problems such as flammability due to the use of the same type of organic liquid electrolyte with lithium-ion battery.Gel polymer electrolytes are being considered as an effective solution to replace conventional organic liquid electrolytes for building safer sodium-ion batteries.In this review paper,the authors present a comprehensive overview of the research progress in electrochemical and physical properties of the gel polymer electrolyte-based sodium batteries.The gel polymer electrolytes based on different polymer hosts namely poly(ethylene oxide),poly(acrylonitrile),poly(methyl methacrylate),poly(vinylidene fluoride),poly(vinylidene fluoride-hexafluoro propylene),and other new polymer networks are summarized.The ionic conductivity,ion transference number,electrochemical window,thermal stability,mechanical property,and interfacial issue with electrodes of gel polymer electrolytes,and the corresponding influence factors are described in detail.Furthermore,the ion transport pathway and ion conduction mechanism are analyzed and discussed.In addition,the advanced gel polymer electrolyte systems including flame-retardant polymer electrolytes,composite gel polymer electrolytes,copolymerization,single-ion conducting polymer electrolytes,etc.with more superior and functional performance are classified and summarized.Finally,the application prospects,development opportunities,remaining challenges,and possible solutions are discussed.展开更多
Two series of polyvinylidene fluoride (PVDF) based gel polymer electrolytes, with different LiClO 4 or propylene carbonate (PC) content, were prepared and analyzed by infrared spectrometer, differential scanning calor...Two series of polyvinylidene fluoride (PVDF) based gel polymer electrolytes, with different LiClO 4 or propylene carbonate (PC) content, were prepared and analyzed by infrared spectrometer, differential scanning calorimetry, scanning electron microscope and complex impedance spectrometer. The results show that there are great interactions between PVDF, PC and lithium cations. Both LiClO 4 and PC content lead to evident change of the morphology of the gel polymer electrolytes. The content of LiClO 4 and PC also influences the ionic conductivity of the samples, and an ionic conductivity of above 10 -3 S·cm -1 can be reached at room temperature.展开更多
Lithium-ion batteries(LIBs)benefit from an effective electrolyte system design in both terms of their safety and energy storage capability.Herein,a series of precursor membranes with high porosity were produced using ...Lithium-ion batteries(LIBs)benefit from an effective electrolyte system design in both terms of their safety and energy storage capability.Herein,a series of precursor membranes with high porosity were produced using electrospinning technology by mixing PVDF and triblock copolymer(PS-PEO-PS),resulting in a porous structure with good interconnections,which facilitates the absorbency of a large amount of electrolyte and further increases the ionic conductivity of gel polymer electrolytes(GPEs).It has been demonstrated that post-cross-linking of the precursor membranes increa ses the rigidity of the nanofibers,which allows the polymer film to be dimensionally sta ble up to 260℃while maintaining superior electrochemical properties.The obtained cross-linked GPEs(CGPEs)showed high ionic conductivity up to 4.53×10^(-3)S·cm^(-1).With the CGPE-25,the assembled Li/LiFeP04 half cells exhibited good rate capability and maintained a capacity of 99.4%and a coulombic efficiency of99.3%at 0.1 C.These results suggest that the combination of electrospinning technique and post-cross-linking is an effective method to construct polymer electrolytes with high thermal stability and steadily decent electrochemical performance,particularly useful for Lithium-ion battery applications that require high-temperature usage.展开更多
Zinc-based batteries(ZBs)have been deemed as a potential substitute for lithium-ion batteries due to its unique advantages of abundant resources,low cost and acceptable energy density.Despite great progress in designi...Zinc-based batteries(ZBs)have been deemed as a potential substitute for lithium-ion batteries due to its unique advantages of abundant resources,low cost and acceptable energy density.Despite great progress in designing electrode materials has been made,the development of high-performance ZBs still remain challenges,such as the dendrite growth of zinc anode,hydrogen evolution reaction,limited electrochemical stability window,water evaporation and liquid leakage.Gel polymer electrolytes(GPEs),including hydrous GPEs with low content of active water and anhydrous GPEs without the presence of water,are proposed to avoid these problems.Furthermore,employing GPEs is conductive to fabricate flexible devices owing to the good mechanical strength.To date,most of researches focus on discovering new GPEs and exploring its application on flexible or wearable devices.Recent reviews also have outlined the polymer matrixes and advances of GPEs in various battery systems.Given this,herein,we seek to summarize the gelation mechanisms of GPEs,involving physical gel of polymer,chemical crosslinking of polymer and chemical polymerization of monomers.Peculiarly,the preparation methods are also classified.In addition,not only the features and central conundrum of GPEs are analyzed but also the corresponding strategies are discussed,contributing to design GPEs with ideal properties for high-performance ZBs.展开更多
Gel polymer electrolytes(GPEs)has been considered as a promising candidate for the development of lithium metal batteries(LMBs)with high energy density and high safety,yet most reported GPEs is flammable,making the LM...Gel polymer electrolytes(GPEs)has been considered as a promising candidate for the development of lithium metal batteries(LMBs)with high energy density and high safety,yet most reported GPEs is flammable,making the LMBs still facing great safety hazards.Herein,we used dimethyl methylphosphate(DMMP)as the functional flame retardant and plasticizer for poly(vinylidene fluoride)(PVDF)matrix to develop a novel nonflammable PVDF-DMMP GPEs for LMBs.The DMMP not only highly enhances the flame resistance of PVDF-DMMP GPEs,the efficient dissociation of lithium salt and the rapid transport of lithium ions,but also helps to form stable and robust CEI/SEI layers.As a result,the ultrathin PVDF-DMMP GPEs(∼20µm)present superb flame resistance,high ionic conductivity(1.34×10^(−3) S cm^(−1) at 30℃),fast lithium ion transport(t_(Li^(+))=0.59at 30℃),high electrochemical stability voltage window(over 4 V)at 30–80℃ and uniform lithium deposition.When used in Li∥Li symmetric cells,Li∥LiFePO_(4)(LFP)and Li∥LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) full cells,the nonflammable PVDF-DMMP GPEs could endow these cells with long-term cycle stability,high rate capability,wide-temperature operation ranges(from−20 to 80℃)and high safety simultaneously.Even when suffering from harsh deconstructive tests,the Li∣PVDF-DMMP GPEs∣LFP pouch cells still work normally without any safety hazards.The actual energy density of the packed pouch cell is as high as 508 Wh kg^(−1).Therefore,our work can provide a promising strategy for the design of high safety and high-energy-density LMBs.展开更多
Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(L...Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs.展开更多
Li-I_(2) batteries have attracted much interest due to their high capacity,exceptional rate performance,and low cost.Even so,the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li-...Li-I_(2) batteries have attracted much interest due to their high capacity,exceptional rate performance,and low cost.Even so,the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li-I_(2) batteries need to be tackled.Herein,the interfacial reactions on the Li anode and I_(2) cathode have been effectively optimized by employing a well-designed gel polymer electrolyte strengthened by cross-linked Ti-O/Si-O(GPETS).The interpenetrating network-reinforced GPETS with high ionic conductivity(1.88×10^(-3)S cm^(-1)at 25℃)and high mechanical strength endows uniform Li deposition/stripping over 1800 h(at 1.0mA cm^(-2),with a plating capacity of 3.0mAh cm^(-2)).Moreover,the GPETS abundant in surface hydroxyls is capable of capturing soluble polyiodides at the interface and accelerating their conversion kinetics,thus synergistically mitigating the shuttle effect.Benefiting from these properties,the use of GPETS results in a high capacity of 207 mAh g^(-1)(1 C)and an ultra-low fading rate of 0.013%per cycle over 2000 cycles(5 C).The current study provides new insights into advanced electrolytes for Li-I_(2) batteries.展开更多
Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage.However,the uncontrollable side-reaction and lithium...Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage.However,the uncontrollable side-reaction and lithium dendrite growth lead to the limited serving life and hinder the practical application of lithium metal batteries.Here,a tri-monomer copolymerized gel polymer electrolyte(TGPE)with a cross-linked reticulation structure was prepared by introducing a cross-linker(polyurethane group)into the acrylate-based in situ polymerization system.The soft segment of polyurethane in TGPE enables the far migration of lithium ions,and the-NH forms hydrogen bonds in the hard segment to build a stable cross-linked framework.This system hinders anion migration and leads to a high Li^(+)migration number(t_(Li^(+))=0.65),which achieves uniform lithium deposition and effectively inhibits lithium dendrite growth.As a result,the assembled symmetric cell shows robust reversibility over 5500 h at a current density of 1 mA cm^(-2).The LFP∷TGPE∷Li cell has a capacity retention of 89.8%after cycling 800 times at a rate of 1C.In summary,in situ polymerization of TGPE electrolytes is expected to be a candidate material for high-energy-density lithium metal batteries.展开更多
In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herei...In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herein, 11 μm-thick gel polymer electrolyte is designed via an integrated electrode/electrolyte structure supported by lithium metal anode. Benefiting from an exemplary superiority of excellent mechanical property, high ionic conductivity, and robust interfacial adhesion, the in-situ formed polymer electrolyte reinforced by titanosiloxane networks(ISPTS) embodies multifunctional roles of physical barrier, ionic carrier, and artificial protective layer at the interface. The potent interfacial interactions foster a seamless fusion of the electrode/electrolyte interfaces and enable continuous ion transport. Moreover, the built-in ISPTS electrolyte participates in the formation of gradient solid-electrolyte interphase(SEI) layer, which enhances the SEI's structural integrity against the strain induced by volume fluctuations of lithium anode.Consequently, the resultant 11 μm-thick ISPTS electrolyte enables lithium symmetric cells with cycling stability over 600 h and LiFePO_(4) cells with remarkable capacity retention of 96.6% after 800 cycles.This study provides a new avenue for designing ultrathin polymer electrolytes towards stable, safe,and high-energy–density lithium metal batteries.展开更多
Lithium metal batteries(LMBs)with extremely high energy densities have several advantages among energy storage equipment.However,the uncontrolled growth of dendrites and the flammable liquid electrolytes(LEs)often cau...Lithium metal batteries(LMBs)with extremely high energy densities have several advantages among energy storage equipment.However,the uncontrolled growth of dendrites and the flammable liquid electrolytes(LEs)often cause safety accidents.All solid-state batteries seem to be the ultimate choice,but solvent-free electrolytes usually fail in terms of conductivity at room temperature.Therefore,gel polymer electrolytes(GPEs)with a simple manufacturing process and high ionic conductivity are considered as the most competitive candidates to resolve the present difficulties.Herein,we design a polymeric network structure via esterification and amidation reactions between polyethylene glycol(PEG)and carbon dots(CDs).After incorporation with polyvinylidene fluoride and some LEs,the as-prepared PEG-CDs composite electrolytes(PCCEs)show a high ionic conductivity of 5.5 mS/cm and an ion transference number of 0.71 at room temperature,as well as good flexibility and thermostability.When the PCCEs are assembled with lithium metal anodes and LiFePO4 or LiCoO2 cathodes,both the cycling stability and the retention rate of these LMBs show excellent performance at room temperature.展开更多
All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance ...All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li~+transport kinetics due to the solid-solid contacts between the electrodes and the solid-state electrolytes.Herein,a novel gel polymer electrolyte(UPP-5)composed of ionic liquid incorporated metal-organic frameworks nanoparticles(IL@MOFs)is designed,it exhibits satisfying electrochemical performances,consisting of an excellent electrochemical stability window(5.5 V)and an improved Li^(+)transference number of 0.52.Moreover,the Li/UPP-5/LiFePO_(4) full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities.This study might provide new insight to create an effective Li^(+)conductive network for the development of all-solid-state lithium-ion batteries.展开更多
Poly(vinylidenefluoride-co-hexafluoropropylene)(PVDF-HFP)based gel polymer electrolytes are widely studied owing to their electrochemical stability and high dielectric constant.However,most gel polymer electrolytes sh...Poly(vinylidenefluoride-co-hexafluoropropylene)(PVDF-HFP)based gel polymer electrolytes are widely studied owing to their electrochemical stability and high dielectric constant.However,most gel polymer electrolytes show unsatisfied safety and interface compatibility due to excessive absorption of volatile and flammable liquid solvents.Herein,by using a safe solvent(N-methyl-2-pyrrolidone)with higher boiling(203℃)and flash points(95℃),we initiatively fabricate a flexible PVDF-HFP based gel polymer electrolyte.The obtained gel polymer electrolyte demonstrates a high ionic conductivity of 7.24×10^−4 S cm−1,an electrochemical window of 5.2 V,and a high lithium transference number of 0.57.As a result,the synthesized polymer electrolyte exhibits a capacity retention of 70%after 500 cycles at 0.5 C,and a discharge capacity of 86 mAh g−1 even at a high current rate of 10 C for LiFePO4 based Li metal batteries.Moreover,a stable Li plating/stripping for more than 500 h is achieved under 0.1 mAh at both room temperature and 70℃.Our results indicate that the PVDF-HFP polymer electrolyte is promising for manufacturing safe and high-performance Li metal polymer batteries.展开更多
Poly(ethylene oxide)(PEO)and its derivatives based gel polymer electrolytes(GPEs)are severely limited in advanced and safe lithium-ion batteries(LIBs)owing to the intrinsically high flammability of liquid electrolytes...Poly(ethylene oxide)(PEO)and its derivatives based gel polymer electrolytes(GPEs)are severely limited in advanced and safe lithium-ion batteries(LIBs)owing to the intrinsically high flammability of liquid electrolytes and PEO.Directly adding flame retardants to the GPEs can suppress their flammability and thus improve the safety of LIBs,but results in deteriorative electrochemical performance.Herein,a novel GPE with chemically bonded flame retardant(i.e.diethyl vinylphosphonate)in cross-linked polyethylene glycol diacrylate matrix,featuring both high-safety and high-performance,is designed.This as-prepared GPE storing the commercial 1 mol L^(-1) LiPF6 electrolyte resists high temperature of 200℃and cannot be ignited as well as possesses a high ionic conductivity(0.60 m S cm^(-1))and good compatibility with lithium.Notably,the LiFePO_(4)/Li battery with this GPE delivers a satisfactory capacity of 142.2 m A h g^(-1) and a superior cycling performance with a capacity retention of 96.3%and a coulombic efficiency of close to 100%for 350 cycles at 0.2 C under ambient temperature.Furthermore,the battery can achieve steady charge–discharge for 100 cycles with a coulombic efficiency of 99.5%at 1 C under 80℃and run normally even at a high temperature of 150℃or under the exposure to butane flame.Differential scanning calorimetry manifests significantly improved battery safety compared to commercial battery systems.This work provides a new pathway for developing next-generation advanced LIBs with enhanced performance and high safety.展开更多
Lithium-sulfur(Li-S)battery can satisfy the need of the future power battery market because of its high energy density,but the hidden dangers caused by lithium anode have seriously hindered their commercialization.Her...Lithium-sulfur(Li-S)battery can satisfy the need of the future power battery market because of its high energy density,but the hidden dangers caused by lithium anode have seriously hindered their commercialization.Herein,an innovative gel polymer electrolyte(GPE)composed of polyvinylidene fluoride(PVDF)and organo-polysulfide polymer(PSPEG)is proposed,which could be used in semisolid-state Li-S batteries for protection of Li anodes.Particularly,organo-polysulfide polymer could chemically/electrochemically generate both inorganic and organic components simultaneously in-situ once contacting fresh Li metal surface and/or during discharging processes.And these inorganic/organic components could participate in the formation of the SEI layer and finally constitute a stable and flexible hybrid SEI layer on the surface of Li metal anode.Moreover,the organic components were permselective to lithium ions against anions.Therefore,PVDF/PSPEG GPE ensures the ideal chemical and electrochemical properties for Li-S batteries.Our work demonstrates an effective solution to solve the problems about Li anodes and contributes to the development of the safe Li metal batteries.展开更多
Replacement of flammable liquid electrolytes with gel polymer electrolytes(GPEs)is a promising route to improve the safety of lithium-ion batteries(LIBs).However,polymer-based electrolytes have limited suitability at ...Replacement of flammable liquid electrolytes with gel polymer electrolytes(GPEs)is a promising route to improve the safety of lithium-ion batteries(LIBs).However,polymer-based electrolytes have limited suitability at low/high temperatures due to the instability of the polymer at high temperatures and the low ionic conductivity of the gel state at low temperatures.Herein,an integrated design of electrodes/fibrous GPEs modified with graphene oxide(GO)is reported.Due to the integrated structure of electrodes/GPEs,the strong interface affinity between electrodes and GPEs ensures that the GPEs spun on electrodes do not shrink at high temperatures(160-180℃),thus preventing a short circuit of electrodes.Moreover,after GO modification,oxygen-containing functional groups of GO can accelerate Li^(+)transport of GO-GPEs even at a low temperature of−15℃.When these GPEs are applied to flexible LIBs,the LIBs show excellent electrochemical performance,with satisfactory cycling stability of 82.9%at 1 C after 1000 cycles at 25℃.More importantly,at a high temperature of 160℃,the LIBs can also discharge normally and light the green light-emitting diode.Furthermore,at a low temperature of−15℃,92.7%of its room-temperature capacity can be obtained due to the accelerated Li^(+)transport caused by GO modification,demonstrating the great potential of this electrolyte and integrated structure for practical gel polymer LIB applications.展开更多
Rechargeable lithium metal batteries(LMBs)have gained much attention recently.However,the short lifespan and safety issues restrict their commercial applications.Here we report a novel gel polymer electrolyte(GPE)base...Rechargeable lithium metal batteries(LMBs)have gained much attention recently.However,the short lifespan and safety issues restrict their commercial applications.Here we report a novel gel polymer electrolyte(GPE)based on lithiated poly(vinyl chloride-r-acrylic acid)(PVCAALi)to realize dendritesuppressing and long-term stable lithium metal cycling.PVC chains ensure the quick gelation process and high electrolyte uptake,and lithiated PAA segments enable the increase of mechanical strength,acceleration of lithium-ion transmission and improvement of interfacial compatibility.PVCAALi GPE showed much higher mechanical strength compared with other free-standing GPEs in previous works.It displays a superior ionic conductivity of 1.50 m S cm^(-1) and a high lithium-ion transference number of 0.59 at room temperature.Besides,the lithiated GPE exhibits excellent interfacial compatibility with lithium metal anodes.Lithium symmetrical cells with PVCAALi GPE yield low hysteresis of 50 m V over1000 h at 1.0 m A cm^(-2).And the possible mechanism of the lithiated GPE with improved lithium-ion transfer and interfacial property was discussed.Accordingly,both the Li4Ti5O12/Li and lithium-sulfur(Li-S)cells assembled with PVCAALi GPE show outstanding electrochemical performance,retaining high discharge capacities of 133.8 m Ah g^(-1) and 603.8 m Ah g^(-1) over 200 cycles,respectively.This work proves excellent application potential of the highly effective and low-cost PVCAALi GPE in safe and long-life LMBs.展开更多
Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfie...Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices.展开更多
基金Funded by National Natural Science Foundation of China(No.51472166)。
文摘Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with high ionic conductivity.The dual network structure BC/P(AM-co-SBMA)gels were formed by a simple one-step polymerization method.The results show that ionic conductivity of BC/P(AM-co-SBMA)GPEs at the room temperature are 3.2×10^(-2) S/cm@1 M H_(2)SO_(4),4.5×10^(-2) S/cm@4 M KOH,and 3.6×10^(-2) S/cm@1 M NaCl,respectively.Using active carbon(AC)as the electrodes,BC/P(AM-co-SBMA)GPEs as both separator and electrolyte matrix,and 4 M KOH as the electrolyte,a symmetric solid supercapacitors(SSC)(AC-GPE-KOH)was assembled and testified.The specific capacitance of AC electrode is 173 F/g and remains 95.0%of the initial value after 5000 cycles and 86.2%after 10,000 cycles.
基金supported by the National Natural Science Foundation of China(Nos.21978258,21776249 and 21676248)。
文摘Lithium-sulfur(Li-S)batteries have become a promising candidate for advanced energy storage system owing to low cost and high theoretical specific energy.In the last decade,in pursuit of Li-S batteries with enhanced safety and energy density,the investigation on the electrolytes has leaped form liquid organic electrolytes to solid polymer ones.However,such solid-state Li-S battery system is greatly limited by unfavorable ionic conductivity,poor interfacial contact and narrow electrochemical windows on account of the absence of any liquid components.To address these issues,gel polymer electrolytes(GPEs),the incorporation of liquid electrolytes into solid polymer matrixes,have been newly developed.Although the excellent ionic transport and low interfacial resistance provided by GPEs have prompted numerous researchers to make certain progress on high-performance Li-S coins,a comprehensive review on GPEs for Li-S batteries remains vacant.Herein,this review focuses on recent development and progress on GPEs in view of their physical and chemical properties for the applications in Li-S batteries.Studies on the components including solid hosts,liquid solutions and fillers of GPEs are systematically summarized with particular emphasis on the relationship between components and performance.Finally,current challenges and directional outlook for fabricating GPEs-based Li-S batteries with outstanding performance are outlined.
文摘An amorphous,colorless,and highly transparent star network polymer with a pentaerythritol core linking four PEG-block polymeric arms was synthesized from the poly(ethylene glycol)(PEG),pentaerythritol,and dichloromethane by Williamson reaction.FTIR and ~1H-NMR measurement demonstrated that the polymer repeating units were C[CH_2-OCH_2O-(CH_2CH_2O)_m-CH_2O-(CH_2CH_2O)_n-CH_2O]_4.The polymer host held well mechanical properties for pentaerythritol cross-linking.The gel polymer electrolytes based on Lithium pe...
基金supported by the National Natural Science Foundation of China(Nos.21771164,U1804129)the Natural Science Foundation of Henan Province(No.222300420525)the Zhongyuan Youth Talent Support Program of Henan Province
文摘Sodium-ion battery is a potential application system for large-scale energy storage due to the advantage of higher nature abundance and lower production cost of sodium-based materials.However,there exist inevitably the safety problems such as flammability due to the use of the same type of organic liquid electrolyte with lithium-ion battery.Gel polymer electrolytes are being considered as an effective solution to replace conventional organic liquid electrolytes for building safer sodium-ion batteries.In this review paper,the authors present a comprehensive overview of the research progress in electrochemical and physical properties of the gel polymer electrolyte-based sodium batteries.The gel polymer electrolytes based on different polymer hosts namely poly(ethylene oxide),poly(acrylonitrile),poly(methyl methacrylate),poly(vinylidene fluoride),poly(vinylidene fluoride-hexafluoro propylene),and other new polymer networks are summarized.The ionic conductivity,ion transference number,electrochemical window,thermal stability,mechanical property,and interfacial issue with electrodes of gel polymer electrolytes,and the corresponding influence factors are described in detail.Furthermore,the ion transport pathway and ion conduction mechanism are analyzed and discussed.In addition,the advanced gel polymer electrolyte systems including flame-retardant polymer electrolytes,composite gel polymer electrolytes,copolymerization,single-ion conducting polymer electrolytes,etc.with more superior and functional performance are classified and summarized.Finally,the application prospects,development opportunities,remaining challenges,and possible solutions are discussed.
文摘Two series of polyvinylidene fluoride (PVDF) based gel polymer electrolytes, with different LiClO 4 or propylene carbonate (PC) content, were prepared and analyzed by infrared spectrometer, differential scanning calorimetry, scanning electron microscope and complex impedance spectrometer. The results show that there are great interactions between PVDF, PC and lithium cations. Both LiClO 4 and PC content lead to evident change of the morphology of the gel polymer electrolytes. The content of LiClO 4 and PC also influences the ionic conductivity of the samples, and an ionic conductivity of above 10 -3 S·cm -1 can be reached at room temperature.
基金financially supported by the National Natural Science Foundation of China(Nos.21574087 and 51973128)Science and Technology Department of Sichuan Province(Nos.2019YJ0128 and 2019YFG0277)supports from the Fundamental Research Funds for the Central Universities。
文摘Lithium-ion batteries(LIBs)benefit from an effective electrolyte system design in both terms of their safety and energy storage capability.Herein,a series of precursor membranes with high porosity were produced using electrospinning technology by mixing PVDF and triblock copolymer(PS-PEO-PS),resulting in a porous structure with good interconnections,which facilitates the absorbency of a large amount of electrolyte and further increases the ionic conductivity of gel polymer electrolytes(GPEs).It has been demonstrated that post-cross-linking of the precursor membranes increa ses the rigidity of the nanofibers,which allows the polymer film to be dimensionally sta ble up to 260℃while maintaining superior electrochemical properties.The obtained cross-linked GPEs(CGPEs)showed high ionic conductivity up to 4.53×10^(-3)S·cm^(-1).With the CGPE-25,the assembled Li/LiFeP04 half cells exhibited good rate capability and maintained a capacity of 99.4%and a coulombic efficiency of99.3%at 0.1 C.These results suggest that the combination of electrospinning technique and post-cross-linking is an effective method to construct polymer electrolytes with high thermal stability and steadily decent electrochemical performance,particularly useful for Lithium-ion battery applications that require high-temperature usage.
基金supported by the Natural Science Foundation of Henan Province(No.222300420511)Science and Technology Research Project of Henan Province(No.212102210462).
文摘Zinc-based batteries(ZBs)have been deemed as a potential substitute for lithium-ion batteries due to its unique advantages of abundant resources,low cost and acceptable energy density.Despite great progress in designing electrode materials has been made,the development of high-performance ZBs still remain challenges,such as the dendrite growth of zinc anode,hydrogen evolution reaction,limited electrochemical stability window,water evaporation and liquid leakage.Gel polymer electrolytes(GPEs),including hydrous GPEs with low content of active water and anhydrous GPEs without the presence of water,are proposed to avoid these problems.Furthermore,employing GPEs is conductive to fabricate flexible devices owing to the good mechanical strength.To date,most of researches focus on discovering new GPEs and exploring its application on flexible or wearable devices.Recent reviews also have outlined the polymer matrixes and advances of GPEs in various battery systems.Given this,herein,we seek to summarize the gelation mechanisms of GPEs,involving physical gel of polymer,chemical crosslinking of polymer and chemical polymerization of monomers.Peculiarly,the preparation methods are also classified.In addition,not only the features and central conundrum of GPEs are analyzed but also the corresponding strategies are discussed,contributing to design GPEs with ideal properties for high-performance ZBs.
基金supported by the National Natural Science Foundation of China(52273081)the Natural Science Foundation of Shaanxi Province(2019JM-175,and 2021GXLH-Z-075)+1 种基金the Key Laboratory Construction Program of Xi’an Municipal Bureau of Science and Technology(201805056ZD7CG40)the Fundamental Research Funds for the Central Universities。
文摘Gel polymer electrolytes(GPEs)has been considered as a promising candidate for the development of lithium metal batteries(LMBs)with high energy density and high safety,yet most reported GPEs is flammable,making the LMBs still facing great safety hazards.Herein,we used dimethyl methylphosphate(DMMP)as the functional flame retardant and plasticizer for poly(vinylidene fluoride)(PVDF)matrix to develop a novel nonflammable PVDF-DMMP GPEs for LMBs.The DMMP not only highly enhances the flame resistance of PVDF-DMMP GPEs,the efficient dissociation of lithium salt and the rapid transport of lithium ions,but also helps to form stable and robust CEI/SEI layers.As a result,the ultrathin PVDF-DMMP GPEs(∼20µm)present superb flame resistance,high ionic conductivity(1.34×10^(−3) S cm^(−1) at 30℃),fast lithium ion transport(t_(Li^(+))=0.59at 30℃),high electrochemical stability voltage window(over 4 V)at 30–80℃ and uniform lithium deposition.When used in Li∥Li symmetric cells,Li∥LiFePO_(4)(LFP)and Li∥LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) full cells,the nonflammable PVDF-DMMP GPEs could endow these cells with long-term cycle stability,high rate capability,wide-temperature operation ranges(from−20 to 80℃)and high safety simultaneously.Even when suffering from harsh deconstructive tests,the Li∣PVDF-DMMP GPEs∣LFP pouch cells still work normally without any safety hazards.The actual energy density of the packed pouch cell is as high as 508 Wh kg^(−1).Therefore,our work can provide a promising strategy for the design of high safety and high-energy-density LMBs.
基金supported by the National Natural Science Foundation of China(52122702,52277215)the Natural Science Foundation of Heilongjiang Province of China(JQ2021E005)。
文摘Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs.
基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China,Grant/Award Number:22KJB150004Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20200047+1 种基金National Natural Science Foundation of China,Grant/Award Numbers:22209062,22222902Youth Talent Promotion Project of Jiangsu Association for Science and Technology of China,Grant/Award Number:JSTJ-2022-023。
文摘Li-I_(2) batteries have attracted much interest due to their high capacity,exceptional rate performance,and low cost.Even so,the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li-I_(2) batteries need to be tackled.Herein,the interfacial reactions on the Li anode and I_(2) cathode have been effectively optimized by employing a well-designed gel polymer electrolyte strengthened by cross-linked Ti-O/Si-O(GPETS).The interpenetrating network-reinforced GPETS with high ionic conductivity(1.88×10^(-3)S cm^(-1)at 25℃)and high mechanical strength endows uniform Li deposition/stripping over 1800 h(at 1.0mA cm^(-2),with a plating capacity of 3.0mAh cm^(-2)).Moreover,the GPETS abundant in surface hydroxyls is capable of capturing soluble polyiodides at the interface and accelerating their conversion kinetics,thus synergistically mitigating the shuttle effect.Benefiting from these properties,the use of GPETS results in a high capacity of 207 mAh g^(-1)(1 C)and an ultra-low fading rate of 0.013%per cycle over 2000 cycles(5 C).The current study provides new insights into advanced electrolytes for Li-I_(2) batteries.
基金support from the National Natural Science Foundation of China(52077096)
文摘Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage.However,the uncontrollable side-reaction and lithium dendrite growth lead to the limited serving life and hinder the practical application of lithium metal batteries.Here,a tri-monomer copolymerized gel polymer electrolyte(TGPE)with a cross-linked reticulation structure was prepared by introducing a cross-linker(polyurethane group)into the acrylate-based in situ polymerization system.The soft segment of polyurethane in TGPE enables the far migration of lithium ions,and the-NH forms hydrogen bonds in the hard segment to build a stable cross-linked framework.This system hinders anion migration and leads to a high Li^(+)migration number(t_(Li^(+))=0.65),which achieves uniform lithium deposition and effectively inhibits lithium dendrite growth.As a result,the assembled symmetric cell shows robust reversibility over 5500 h at a current density of 1 mA cm^(-2).The LFP∷TGPE∷Li cell has a capacity retention of 89.8%after cycling 800 times at a rate of 1C.In summary,in situ polymerization of TGPE electrolytes is expected to be a candidate material for high-energy-density lithium metal batteries.
基金National Natural Science Foundation of China (22222902, 22209062)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (22KJB150004)+1 种基金Youth Talent Promotion Project of Jiangsu Association for Science and Technology of China (JSTJ-2022-023)Undergraduate Innovation and Entrepreneurship Training Program (202310320066Z)。
文摘In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herein, 11 μm-thick gel polymer electrolyte is designed via an integrated electrode/electrolyte structure supported by lithium metal anode. Benefiting from an exemplary superiority of excellent mechanical property, high ionic conductivity, and robust interfacial adhesion, the in-situ formed polymer electrolyte reinforced by titanosiloxane networks(ISPTS) embodies multifunctional roles of physical barrier, ionic carrier, and artificial protective layer at the interface. The potent interfacial interactions foster a seamless fusion of the electrode/electrolyte interfaces and enable continuous ion transport. Moreover, the built-in ISPTS electrolyte participates in the formation of gradient solid-electrolyte interphase(SEI) layer, which enhances the SEI's structural integrity against the strain induced by volume fluctuations of lithium anode.Consequently, the resultant 11 μm-thick ISPTS electrolyte enables lithium symmetric cells with cycling stability over 600 h and LiFePO_(4) cells with remarkable capacity retention of 96.6% after 800 cycles.This study provides a new avenue for designing ultrathin polymer electrolytes towards stable, safe,and high-energy–density lithium metal batteries.
基金supported by the National Natural Science Foundation of China(Nos.21975048 and 21771039)the Shanghai Science and Technology Committee(No.19DZ2270100).
文摘Lithium metal batteries(LMBs)with extremely high energy densities have several advantages among energy storage equipment.However,the uncontrolled growth of dendrites and the flammable liquid electrolytes(LEs)often cause safety accidents.All solid-state batteries seem to be the ultimate choice,but solvent-free electrolytes usually fail in terms of conductivity at room temperature.Therefore,gel polymer electrolytes(GPEs)with a simple manufacturing process and high ionic conductivity are considered as the most competitive candidates to resolve the present difficulties.Herein,we design a polymeric network structure via esterification and amidation reactions between polyethylene glycol(PEG)and carbon dots(CDs).After incorporation with polyvinylidene fluoride and some LEs,the as-prepared PEG-CDs composite electrolytes(PCCEs)show a high ionic conductivity of 5.5 mS/cm and an ion transference number of 0.71 at room temperature,as well as good flexibility and thermostability.When the PCCEs are assembled with lithium metal anodes and LiFePO4 or LiCoO2 cathodes,both the cycling stability and the retention rate of these LMBs show excellent performance at room temperature.
基金financially supported by National Natural Science Foundation of China (No.21701083)。
文摘All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li~+transport kinetics due to the solid-solid contacts between the electrodes and the solid-state electrolytes.Herein,a novel gel polymer electrolyte(UPP-5)composed of ionic liquid incorporated metal-organic frameworks nanoparticles(IL@MOFs)is designed,it exhibits satisfying electrochemical performances,consisting of an excellent electrochemical stability window(5.5 V)and an improved Li^(+)transference number of 0.52.Moreover,the Li/UPP-5/LiFePO_(4) full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities.This study might provide new insight to create an effective Li^(+)conductive network for the development of all-solid-state lithium-ion batteries.
基金supported by Special fund of key technology research and development projects(20180201097GX,20180201099GX,20180201096GX)Jilin province science and technology department.The R&D Program of power batteries with low temperature and high energy,Science and Technology Bureau of Changchun(19SS013)+4 种基金National Key R&D Program of China(2016YFB0100500)the National Natural Science Foundation of China(21905041)the Fundamental Research Funds for the Central Universities,Project funded by China Postdoctoral Science Foundation,and Natural Science Foundation of the Jilin Province Education department(JJKH20190265KJ)The Fundamental Research Funds for the Central Universities(2412019FZ015)Key Subject Construction of Physical Chemistry of Northeast Normal University.
文摘Poly(vinylidenefluoride-co-hexafluoropropylene)(PVDF-HFP)based gel polymer electrolytes are widely studied owing to their electrochemical stability and high dielectric constant.However,most gel polymer electrolytes show unsatisfied safety and interface compatibility due to excessive absorption of volatile and flammable liquid solvents.Herein,by using a safe solvent(N-methyl-2-pyrrolidone)with higher boiling(203℃)and flash points(95℃),we initiatively fabricate a flexible PVDF-HFP based gel polymer electrolyte.The obtained gel polymer electrolyte demonstrates a high ionic conductivity of 7.24×10^−4 S cm−1,an electrochemical window of 5.2 V,and a high lithium transference number of 0.57.As a result,the synthesized polymer electrolyte exhibits a capacity retention of 70%after 500 cycles at 0.5 C,and a discharge capacity of 86 mAh g−1 even at a high current rate of 10 C for LiFePO4 based Li metal batteries.Moreover,a stable Li plating/stripping for more than 500 h is achieved under 0.1 mAh at both room temperature and 70℃.Our results indicate that the PVDF-HFP polymer electrolyte is promising for manufacturing safe and high-performance Li metal polymer batteries.
基金supported by the National Natural Science Foundation of China(51773134)the Sichuan Science and Technology Program(2019YFH0112)the Fundamental Research Funds for the Central Universities。
文摘Poly(ethylene oxide)(PEO)and its derivatives based gel polymer electrolytes(GPEs)are severely limited in advanced and safe lithium-ion batteries(LIBs)owing to the intrinsically high flammability of liquid electrolytes and PEO.Directly adding flame retardants to the GPEs can suppress their flammability and thus improve the safety of LIBs,but results in deteriorative electrochemical performance.Herein,a novel GPE with chemically bonded flame retardant(i.e.diethyl vinylphosphonate)in cross-linked polyethylene glycol diacrylate matrix,featuring both high-safety and high-performance,is designed.This as-prepared GPE storing the commercial 1 mol L^(-1) LiPF6 electrolyte resists high temperature of 200℃and cannot be ignited as well as possesses a high ionic conductivity(0.60 m S cm^(-1))and good compatibility with lithium.Notably,the LiFePO_(4)/Li battery with this GPE delivers a satisfactory capacity of 142.2 m A h g^(-1) and a superior cycling performance with a capacity retention of 96.3%and a coulombic efficiency of close to 100%for 350 cycles at 0.2 C under ambient temperature.Furthermore,the battery can achieve steady charge–discharge for 100 cycles with a coulombic efficiency of 99.5%at 1 C under 80℃and run normally even at a high temperature of 150℃or under the exposure to butane flame.Differential scanning calorimetry manifests significantly improved battery safety compared to commercial battery systems.This work provides a new pathway for developing next-generation advanced LIBs with enhanced performance and high safety.
基金supported by the National Natural Science Foundation of China(Grant No.21805016 and Grant No.51572037)the Natural Science Foundation of Jiangsu Province of China(No.BK20180961)+3 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.18KJD530001 and Grant No.18KJB430004)the Key Research and Development Project of Jiangsu Province(Grant No.BE2017006-3)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Lithium-sulfur(Li-S)battery can satisfy the need of the future power battery market because of its high energy density,but the hidden dangers caused by lithium anode have seriously hindered their commercialization.Herein,an innovative gel polymer electrolyte(GPE)composed of polyvinylidene fluoride(PVDF)and organo-polysulfide polymer(PSPEG)is proposed,which could be used in semisolid-state Li-S batteries for protection of Li anodes.Particularly,organo-polysulfide polymer could chemically/electrochemically generate both inorganic and organic components simultaneously in-situ once contacting fresh Li metal surface and/or during discharging processes.And these inorganic/organic components could participate in the formation of the SEI layer and finally constitute a stable and flexible hybrid SEI layer on the surface of Li metal anode.Moreover,the organic components were permselective to lithium ions against anions.Therefore,PVDF/PSPEG GPE ensures the ideal chemical and electrochemical properties for Li-S batteries.Our work demonstrates an effective solution to solve the problems about Li anodes and contributes to the development of the safe Li metal batteries.
基金supported by Beijing Municipal Science&Technology Commission Nos.Z181100004818004,Z181100001018029,and Z191100006119027.
文摘Replacement of flammable liquid electrolytes with gel polymer electrolytes(GPEs)is a promising route to improve the safety of lithium-ion batteries(LIBs).However,polymer-based electrolytes have limited suitability at low/high temperatures due to the instability of the polymer at high temperatures and the low ionic conductivity of the gel state at low temperatures.Herein,an integrated design of electrodes/fibrous GPEs modified with graphene oxide(GO)is reported.Due to the integrated structure of electrodes/GPEs,the strong interface affinity between electrodes and GPEs ensures that the GPEs spun on electrodes do not shrink at high temperatures(160-180℃),thus preventing a short circuit of electrodes.Moreover,after GO modification,oxygen-containing functional groups of GO can accelerate Li^(+)transport of GO-GPEs even at a low temperature of−15℃.When these GPEs are applied to flexible LIBs,the LIBs show excellent electrochemical performance,with satisfactory cycling stability of 82.9%at 1 C after 1000 cycles at 25℃.More importantly,at a high temperature of 160℃,the LIBs can also discharge normally and light the green light-emitting diode.Furthermore,at a low temperature of−15℃,92.7%of its room-temperature capacity can be obtained due to the accelerated Li^(+)transport caused by GO modification,demonstrating the great potential of this electrolyte and integrated structure for practical gel polymer LIB applications.
基金the financial support for this work provided by the National 863 Program of China(Grant number 2012AA03A602)the National Key R&D Program of China(Grant number 2017YFE0114100)+2 种基金the National Natural Science Foundation of China(21805240)the Science and Technology Project of Guangdong Province of China(2019 ST115)the MOE Key Laboratory of Macromolecular Synthesis and Functionalization,Zhejiang University(Grant number 2017MSF05)。
文摘Rechargeable lithium metal batteries(LMBs)have gained much attention recently.However,the short lifespan and safety issues restrict their commercial applications.Here we report a novel gel polymer electrolyte(GPE)based on lithiated poly(vinyl chloride-r-acrylic acid)(PVCAALi)to realize dendritesuppressing and long-term stable lithium metal cycling.PVC chains ensure the quick gelation process and high electrolyte uptake,and lithiated PAA segments enable the increase of mechanical strength,acceleration of lithium-ion transmission and improvement of interfacial compatibility.PVCAALi GPE showed much higher mechanical strength compared with other free-standing GPEs in previous works.It displays a superior ionic conductivity of 1.50 m S cm^(-1) and a high lithium-ion transference number of 0.59 at room temperature.Besides,the lithiated GPE exhibits excellent interfacial compatibility with lithium metal anodes.Lithium symmetrical cells with PVCAALi GPE yield low hysteresis of 50 m V over1000 h at 1.0 m A cm^(-2).And the possible mechanism of the lithiated GPE with improved lithium-ion transfer and interfacial property was discussed.Accordingly,both the Li4Ti5O12/Li and lithium-sulfur(Li-S)cells assembled with PVCAALi GPE show outstanding electrochemical performance,retaining high discharge capacities of 133.8 m Ah g^(-1) and 603.8 m Ah g^(-1) over 200 cycles,respectively.This work proves excellent application potential of the highly effective and low-cost PVCAALi GPE in safe and long-life LMBs.
基金funding supports from the Natural Science Basis Research Plan in Shaanxi Province of China(2019JLZ-10)the Independent Research Project of National Key Laboratory of Electrical Insulation and Power Equipment(EIPE19111)。
文摘Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices.