Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinica...Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice.However, esophageal stents of different types and parameters have varying adaptability and effectiveness forpatients, and they need to be individually selected according to the patient’s specific situation. The purposeof this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3Dprinting technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer, and established an artificial neural network model that could predict the radial forceof esophageal stents based on the content of TPU, PCL and print parameter. We selected three optimal ratios formechanical performance tests and evaluated the biomechanical effects of different ratios of stents on esophagealimplantation, swallowing, and stent migration processes through finite element numerical simulation and in vitrosimulation tests. The results showed that different ratios of polymer stents had different mechanical properties,affecting the effectiveness of stent expansion treatment and the possibility of postoperative complications of stentimplantation.展开更多
Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a ...Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a sealant,coupled with an air seepage evaluation model that incorporates Knudsen diffusion.Moreover,the initial coating application methods were outlined,and the advantages of using NOSP compared to other sealing materials,particularly regarding cost and construction techniques,were also examined and discussed.Experimental results indicated a significant reduction in permeability of rock specimens coated with a 7–10μm thick NOSP layer.Specifically,under a 0.5 MPa pulse pressure,the permeability decreased to less than 1 n D,and under a 4 MPa pulse pressure,it ranged between4.5×10^(-6)–5.5×10^(-6)m D,marking a 75%–80%decrease in granite permeability.The sealing efficacy of NOSP surpasses concrete and is comparable to rubber materials.The optimal viscosity for application lies between 95 and 105 KU,and the coating thickness should ideally range from 7 to 10μm,applied to substrates with less than 3%porosity.This study provides new insights into air transport and sealing mechanisms at the pore level,proposing NOSP as a cost-effective and simplified solution for CAES applications.展开更多
The effects of the calorimetric buffer solutions were investigated while the two colorimetric reactions of AI-ferron complex and Fe-ferron complex occurred individually, and the effects of the testing wavelength and t...The effects of the calorimetric buffer solutions were investigated while the two colorimetric reactions of AI-ferron complex and Fe-ferron complex occurred individually, and the effects of the testing wavelength and the pH of the solutions were also investigated. A timed complexatian colorimetric analysis method of Al-Fe-ferron in view of the total concentration of {AI + Fe} was then established to determine the species distribution of polymeric Al-Fe. The testing wavelength was recommended at 362 net and the testing pH value was 5. With a comparison of the ratios of n(Al)/n(Fe), the standard adsorption curves of the polymeric Al-Fe solutions were derived from the experimental results. Furthermore, the solutions' composition were carious in both the molar n(Al)/n(Fe) ratios, i.e. 0/0, 5/5, 9/1 and 0/10, and the concentrations associated with the total ( Al + Fe which ranged from 10(-5) to 10(-4) mol/L..展开更多
The conduct mechanism of the doped polymer is considered. In an asymmetrysystem composed of high polymer and doping conductive matte, chain or congeries framework will beformed between the conductive particles to impr...The conduct mechanism of the doped polymer is considered. In an asymmetrysystem composed of high polymer and doping conductive matte, chain or congeries framework will beformed between the conductive particles to improve the conductance characteristic. In thisprocession, the conductive particles interact to each other. In this paper, we describe theconductance of the doped polymer by Monte Carlo method. The results accord with the experimentsquite well. It can be concluded that there is an evident change of doped polymer from nonconductorto metal.展开更多
Al Ferron timed complex colorimetric method (AFM) and 27 Al NMR spectroscopy method(ANM) were discussed. For the former, the different colorimetric reagent preparation methods' results indicate that the...Al Ferron timed complex colorimetric method (AFM) and 27 Al NMR spectroscopy method(ANM) were discussed. For the former, the different colorimetric reagent preparation methods' results indicate that there are some differences beteween them, and the combined method can be used as a simplified procedure. For the latter, the small tube method is more accurate. Eventually, the Al 13 (ANM) was compared to the Al b (AFM).展开更多
A modified Stober method has been developed which permits the controlled growth of spherical hollow spheres with diameters between 197 and 208 nanometers by consecutively cocondensed methyltrimethoxysilane and dimethy...A modified Stober method has been developed which permits the controlled growth of spherical hollow spheres with diameters between 197 and 208 nanometers by consecutively cocondensed methyltrimethoxysilane and dimethyldimethoxysilane monomers onto microemulsion of polydimethylsiloxane and subsequently removing the templated polydimethylsiloxane by exposure to solvents. Ammonia was used as a morphological catalyst. The morphology of the polymer spheres was demonstrated by transmission electron micrographs (TEM) and atomic force microscopy (AFM).展开更多
By dynamic method under UV irradiation, commercial melt-blown polypropylene (PPMB) filter element was modified with acrylamide (AAm) using benzophenone (BP) as initiator. Attenuated total reflection-Fourier tran...By dynamic method under UV irradiation, commercial melt-blown polypropylene (PPMB) filter element was modified with acrylamide (AAm) using benzophenone (BP) as initiator. Attenuated total reflection-Fourier transform infrared spectroscopy and scanning electron microscope verified that polyacrylamide chain was grafted on the fiber surface of PPMB filter element. Elemental content analysis with energy dispersive X-ray of fibers revealed that the polymerization content in the inner part of filter element was relatively higher than that in the outer. Degree of grafting changed with initiator concentration, monomer concentration, reaction temperature and reached 2.6% at the reaction condition: CBp=0.06 mol/L, CAAm=2.0 mol/L, irradiation time: 80 min, temperature: 60℃. Relative water flux altered with the hydrophilicity and pore size of filter element. In the antifouling test, the modified filter gave greater flux recovery (approximately 70%) after filtration of the water extract of Liuweidihuang, suggesting that the fouling layer was more easily reversible due to the hydrophilic nature of the modified filter.展开更多
Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave ref...Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave reflection method is found to can obtain the thickness distribution along a certain direction.It is a simple and suitable method to evaluate the film thickness uniformity.展开更多
A polymeric gel is an aggregate of polymers and solvent molecules, which can retain its shape after a large deformation. The deformation behavior of polymeric gels was often described based on the Flory-Rehner free en...A polymeric gel is an aggregate of polymers and solvent molecules, which can retain its shape after a large deformation. The deformation behavior of polymeric gels was often described based on the Flory-Rehner free energy function without considering the influence of chain entanglements on the mechanical behavior of gels. In this paper,a new hybrid free energy function for gels is formulated by combining the EdwardsVilgis slip-link model and the Flory-Huggins mixing model to quantify the time-dependent concurrent process of large deformation and mass transport. The finite element method is developed to analyze examples of swelling-induced deformation. Simulation results are compared with available experimental data and show good agreement. The influence of entanglements on the time-dependent deformation behavior of gels is also demonstrated.The study of large deformation kinetics of polymeric gel is useful for diverse applications.展开更多
Different Ziegler-Natta catalysts were employed to polymerize ethylene. To investigate the influences of reaction parameters, namely Al/Ti molar ratio, hydrogen and processing parameters, i.e. ethylene pressure and te...Different Ziegler-Natta catalysts were employed to polymerize ethylene. To investigate the influences of reaction parameters, namely Al/Ti molar ratio, hydrogen and processing parameters, i.e. ethylene pressure and temperature, a Taguchi experimental design was worked out. An L27 orthogonal array was chosen to take the above-mentioned parameters and relevant interactions into account. Response surface method was the tool used to analyze the experimental design results. Al/Ti, ethylene pressure and temperature were selected as experimental design factors, and catalyst activity and polymerization yield were the response parameters. Increasing pressure, due to an increment in monomer accessibility, and rising Al/Ti, because of higher reduction in the catalysts, cause an increase in both polymerization yield and catalyst activity. Nonetheless, a higher temperature, thanks to reducing ethylene solubility in the slurry medium and partially catalyst destruction, lead to a reduction in both response parameters. A synergistic effect was also observed between temperature and pressure. All catalyst activities will reduce in the presence of hydrogen. Molecular weight also shows a decline in the presence of hydrogen as a transfer agent. However, the polydispersity index remains approximately intact. Using SEM, various morphologies, owing to different catalyst morphologies, were seen for the polyethylene.展开更多
Many attempts have been made to control the regioselectivity for olefin poly- merization by varying the structures of ligands in catalysts. The regioselectivity of propylene polymerization was investigated by replacin...Many attempts have been made to control the regioselectivity for olefin poly- merization by varying the structures of ligands in catalysts. The regioselectivity of propylene polymerization was investigated by replacing a nitrogen atom in the Pd(II) diimine catalyst with an oxygen atom from density functional theory method at the B3LYP/LANL2DZ level. The results show that the 1,2-insertion becomes a rival mechanism to the 2,1-insertion when the nitrogen atom is replaced by the oxygen atom leading to an asymmetric environment in the catalyst, and that the steric effect in the asymmetrical catalyst plays an important part in the polymerization. The insertion barrier from 2-O is much higher than that from 2-N. A pyramid transition state was characterized for the catalyst to convert 2-O back to 2-N through internal rotation. The propylene prefers to coordinate at the opposite side of O in the catalyst. This is the driving force for the internal rotation. The results are significant for isotactic and syndiotactic polymerization.展开更多
In order to fabricate porous ceramics with good properties and proper production cost,SiC-Al2 O3 porous ceramics were prepared at 1 450 ℃ for 2 h from the powders of commercial silicon carbide and white fused corundu...In order to fabricate porous ceramics with good properties and proper production cost,SiC-Al2 O3 porous ceramics were prepared at 1 450 ℃ for 2 h from the powders of commercial silicon carbide and white fused corundum via a polymeric replication method. Effects of the mass ratio of SiC powder to white fused corundum powder( 1 ∶ 3,1 ∶ 1 and 3 ∶ 1) on the appearance,phase composition,sintering properties and thermal shock resistance were investigated. The research results indicate that the as-prepared Si C-Al2 O3 porous ceramics have uniform pores,and their linear shrinkage ratio,apparent porosity and bulk density reach 4. 70%,67. 17%and 0. 83 g·cm-3,respectively. The thermal shock cycles from 1 400 ℃ to room temperature reach 23 including 15 cycles in air cooling condition and then 8 cycles in water cooling condition. Their main phases areα-Al2 O3 and Al6 Si2 O13 as well as a small amount of SiC and free SiO2. The as-prepared porous ceramic with the ratio of m( SiC) ∶ m( Al2 O3) = 1∶ 1 possesses prior comprehensive properties.展开更多
It is found that there is a linear relationship between log P-w, and the parameter term V-f/0.5 E(coh) [1+(delta(w) - delta(p))(2)/delta(p)(2), from the water permeability (P-w) data of 21 polymers covering 4 orders o...It is found that there is a linear relationship between log P-w, and the parameter term V-f/0.5 E(coh) [1+(delta(w) - delta(p))(2)/delta(p)(2), from the water permeability (P-w) data of 21 polymers covering 4 orders of magnitude. This correlation may be useful in choosing membrane materials for dehumidification of gases.展开更多
During the course of study, we found that both poly (N-isopropylacrylamide ) (PNIP) and PNIP-Ab (enzyme-labelled antibody)could be adhere tightly to a cellulose acetale-nitrate membrane, and that the retention of PNI...During the course of study, we found that both poly (N-isopropylacrylamide ) (PNIP) and PNIP-Ab (enzyme-labelled antibody)could be adhere tightly to a cellulose acetale-nitrate membrane, and that the retention of PNIP-Ab on the membrane increased over 30-fold when compared with the unconjugated Ab.Thus we used this characteristic to develop a novel immunoassay method-polymer enzyme linked immunoassay method: homogeneous antigen-antibody reaction and heterogeneous separation process. When applied for detection of human serum HBsAg, this immunoassay system can detect as little as 1 ng/ml of human serum HBsAg.展开更多
To develop the green polymeric membrane electrolyte,-Polycaprolactone(PCL)was used as a host and the Ionic liquid(IL)(1-Ethyl-3-methylimidazolium tosylate)as a dopant.The IL is a source of mobile charges in the polyme...To develop the green polymeric membrane electrolyte,-Polycaprolactone(PCL)was used as a host and the Ionic liquid(IL)(1-Ethyl-3-methylimidazolium tosylate)as a dopant.The IL is a source of mobile charges in the polymer electrolyte system.The composite membrane has been prepared by Hot Press method and then we characterised this membrane for ionic transportation.Formation of nanocomposite system has been ascertained from their XRD pattern.Interaction phenomenon was studied by ATR based FTIR and Laser Raman spectroscopic technique.Variation of conductivity with composition and temperature was studied with the aid of impedance spectroscopy data.展开更多
This paper describes the effect of the composition of the oxide films on the properties of electrodes Ti/M<sub>x</sub>Ti<sub>y</sub>Sn<sub>z</sub>O<sub>2</sub> (M = Ir o...This paper describes the effect of the composition of the oxide films on the properties of electrodes Ti/M<sub>x</sub>Ti<sub>y</sub>Sn<sub>z</sub>O<sub>2</sub> (M = Ir or Ru) prepared by the polymeric precursor method. XRD studies showed that the anodes are formed by solid solutions. The electrodes containing IrO<sub>2</sub> exhibit lower activity for the oxygen evolution reaction. The doping of the electrode surface with SnO<sub>2</sub> improves the catalytic properties of the anodes. However, it should be held in appropriate compositions, because the change in the atomic ratio of this element shows a marked effect on the stability of the oxides. Electrode Ti/Ir<sub>0.2</sub>Ti<sub>0.3</sub>Sn<sub>0.5</sub>O<sub>2</sub> has lower lifetime, i.e. 6 hours. The 20% decrease in the stoichiometric amount of SnO<sub>2</sub> increases the time to a value above 70 hours, as observed for Ti/Ir<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub>. Electrode Ti/Ru<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub> shows lifetime of 11 hours;therefore IrO<sub>2</sub> is more stable than RuO<sub>2</sub> under the conditions investigated. These results suggest that electrode Ti/Ir<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub> is promising for different applications, such as water electrolysis, capacitors and organic electrosynthesis.展开更多
In the current work, LaNiO3 perovskite was synthesized using the polymeric precursor method. The materials were thermally treated at 300°C for 2 hours, subsequently supported on alumina or zirconia and finally ca...In the current work, LaNiO3 perovskite was synthesized using the polymeric precursor method. The materials were thermally treated at 300°C for 2 hours, subsequently supported on alumina or zirconia and finally calcined at 800°C for 4 hours. The resulting samples were characterized by X-ray diffraction, thermogravimetry, BET surface area and thermo-programmed reduction. Steam reforming reactions were carried out at 750°C and 6 bar during 4 hours using a pilot reactor under a H2O:CH4 ratio of 2.5. The mass of catalysts was about 5.7 g. X-ray diffraction patterns confirmed the formation of the perovskite structure in all samples prepared. The results also showed that lanthanum nickelate was more efficient when supported on alumina than zirconia. Finally, it was observed that the methane conversion was approximately 94% and the selectivity to hydrogen was about 70%. In all cases low selectivity to CO and CO2 was verified.展开更多
In today's education and teaching reform,the traditional teaching method in the teaching of polymer materials has been gradually replaced with various new teaching methods.Among them,the case analysis method is a ...In today's education and teaching reform,the traditional teaching method in the teaching of polymer materials has been gradually replaced with various new teaching methods.Among them,the case analysis method is a very efective teaching method,which has been applied to the teaching of polymer materials.Through example-based teaching,students 125 participation can be effectively improved,and their theoretical knowledge can be fully utilized.This would have a positive role in promoting the improvement of students'knowledge system and their learning ability.In regard to this,this article analyzes the application of case analysis in the teaching of polymer materials so as to improve its efficiency and quality.展开更多
The irrationality of existing phase field model is analyzed and a modified phase-field model is proposed for polymer crystal growth, in which the parameters are obtained from real materials and very simple to use, and...The irrationality of existing phase field model is analyzed and a modified phase-field model is proposed for polymer crystal growth, in which the parameters are obtained from real materials and very simple to use, and most importantly, no paradoxical parameters appeared in the model. Moreover, it can simulate different microstructure patterns owing to the use of a new different free energy function for the simulation of morphologies of polymer. The new free energy function considers both the cases of T〈Tm and T≥Tm, which is more reasonable than that in published literatures that all ignored the T≥Tm case. In order to show the validity of the modified model, the finite difference method is used to solve the model and different crystallization morphologies during the solidification process of isotactic polystyrene are obtained under different conditions. Numerical results show that the growth rate of the initial secondary arms is obviously increased as the anisotropy strength increases. But the anisotropy strength seems to have no apparent effect on the global growth rate. The whole growth process of the dendrite depends mainly upon the latent heat and the latent heat has a direct effect on the tip radius and tip velocity of side branches.展开更多
基金Nanning Technology and Innovation Special Program(20204122)and Research Grant for 100 Talents of Guangxi Plan.
文摘Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice.However, esophageal stents of different types and parameters have varying adaptability and effectiveness forpatients, and they need to be individually selected according to the patient’s specific situation. The purposeof this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3Dprinting technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer, and established an artificial neural network model that could predict the radial forceof esophageal stents based on the content of TPU, PCL and print parameter. We selected three optimal ratios formechanical performance tests and evaluated the biomechanical effects of different ratios of stents on esophagealimplantation, swallowing, and stent migration processes through finite element numerical simulation and in vitrosimulation tests. The results showed that different ratios of polymer stents had different mechanical properties,affecting the effectiveness of stent expansion treatment and the possibility of postoperative complications of stentimplantation.
基金supported by the National Natural Science Foundation of China(No.42272321)Hubei Provincial Key Research Projects(Nos.2022BAA093 and 2022BAD163)+1 种基金Major Scientific and Technological Special Project of Jiangxi Province(No.2023ACG01004)WSGRI Engineering&Surveying Incorporation Limited(No.6120230256)。
文摘Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a sealant,coupled with an air seepage evaluation model that incorporates Knudsen diffusion.Moreover,the initial coating application methods were outlined,and the advantages of using NOSP compared to other sealing materials,particularly regarding cost and construction techniques,were also examined and discussed.Experimental results indicated a significant reduction in permeability of rock specimens coated with a 7–10μm thick NOSP layer.Specifically,under a 0.5 MPa pulse pressure,the permeability decreased to less than 1 n D,and under a 4 MPa pulse pressure,it ranged between4.5×10^(-6)–5.5×10^(-6)m D,marking a 75%–80%decrease in granite permeability.The sealing efficacy of NOSP surpasses concrete and is comparable to rubber materials.The optimal viscosity for application lies between 95 and 105 KU,and the coating thickness should ideally range from 7 to 10μm,applied to substrates with less than 3%porosity.This study provides new insights into air transport and sealing mechanisms at the pore level,proposing NOSP as a cost-effective and simplified solution for CAES applications.
基金TheNationalNaturalScienceFoundationofChina (No .2 96 770 0 4)
文摘The effects of the calorimetric buffer solutions were investigated while the two colorimetric reactions of AI-ferron complex and Fe-ferron complex occurred individually, and the effects of the testing wavelength and the pH of the solutions were also investigated. A timed complexatian colorimetric analysis method of Al-Fe-ferron in view of the total concentration of {AI + Fe} was then established to determine the species distribution of polymeric Al-Fe. The testing wavelength was recommended at 362 net and the testing pH value was 5. With a comparison of the ratios of n(Al)/n(Fe), the standard adsorption curves of the polymeric Al-Fe solutions were derived from the experimental results. Furthermore, the solutions' composition were carious in both the molar n(Al)/n(Fe) ratios, i.e. 0/0, 5/5, 9/1 and 0/10, and the concentrations associated with the total ( Al + Fe which ranged from 10(-5) to 10(-4) mol/L..
文摘The conduct mechanism of the doped polymer is considered. In an asymmetrysystem composed of high polymer and doping conductive matte, chain or congeries framework will beformed between the conductive particles to improve the conductance characteristic. In thisprocession, the conductive particles interact to each other. In this paper, we describe theconductance of the doped polymer by Monte Carlo method. The results accord with the experimentsquite well. It can be concluded that there is an evident change of doped polymer from nonconductorto metal.
文摘Al Ferron timed complex colorimetric method (AFM) and 27 Al NMR spectroscopy method(ANM) were discussed. For the former, the different colorimetric reagent preparation methods' results indicate that there are some differences beteween them, and the combined method can be used as a simplified procedure. For the latter, the small tube method is more accurate. Eventually, the Al 13 (ANM) was compared to the Al b (AFM).
基金support of the Key Laboratory of Advanced Textile Materials and Manufacturing Technology(Zhejiang Sci-Tech University),Ministry of Education(No.2005QN04)the National Natural Science Foundation of China(No.20573095)is gratefully acknowledged.
文摘A modified Stober method has been developed which permits the controlled growth of spherical hollow spheres with diameters between 197 and 208 nanometers by consecutively cocondensed methyltrimethoxysilane and dimethyldimethoxysilane monomers onto microemulsion of polydimethylsiloxane and subsequently removing the templated polydimethylsiloxane by exposure to solvents. Ammonia was used as a morphological catalyst. The morphology of the polymer spheres was demonstrated by transmission electron micrographs (TEM) and atomic force microscopy (AFM).
基金Project supported by the Natural Science Foundation of Beijing(No.2051002)Science and Technology Programme of Beijing(No.D0205004040421)
文摘By dynamic method under UV irradiation, commercial melt-blown polypropylene (PPMB) filter element was modified with acrylamide (AAm) using benzophenone (BP) as initiator. Attenuated total reflection-Fourier transform infrared spectroscopy and scanning electron microscope verified that polyacrylamide chain was grafted on the fiber surface of PPMB filter element. Elemental content analysis with energy dispersive X-ray of fibers revealed that the polymerization content in the inner part of filter element was relatively higher than that in the outer. Degree of grafting changed with initiator concentration, monomer concentration, reaction temperature and reached 2.6% at the reaction condition: CBp=0.06 mol/L, CAAm=2.0 mol/L, irradiation time: 80 min, temperature: 60℃. Relative water flux altered with the hydrophilicity and pore size of filter element. In the antifouling test, the modified filter gave greater flux recovery (approximately 70%) after filtration of the water extract of Liuweidihuang, suggesting that the fouling layer was more easily reversible due to the hydrophilic nature of the modified filter.
文摘Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave reflection method is found to can obtain the thickness distribution along a certain direction.It is a simple and suitable method to evaluate the film thickness uniformity.
基金Project supported by the National Natural Science Foundation of China(Nos.11272237 and11502131)the Natural Science Foundation of Fujian Province(No.2016J05019)the Foundation of the Higher Education Institutions of Fujian Education Department for Distinguished Young Scholar(No.[2016]23)
文摘A polymeric gel is an aggregate of polymers and solvent molecules, which can retain its shape after a large deformation. The deformation behavior of polymeric gels was often described based on the Flory-Rehner free energy function without considering the influence of chain entanglements on the mechanical behavior of gels. In this paper,a new hybrid free energy function for gels is formulated by combining the EdwardsVilgis slip-link model and the Flory-Huggins mixing model to quantify the time-dependent concurrent process of large deformation and mass transport. The finite element method is developed to analyze examples of swelling-induced deformation. Simulation results are compared with available experimental data and show good agreement. The influence of entanglements on the time-dependent deformation behavior of gels is also demonstrated.The study of large deformation kinetics of polymeric gel is useful for diverse applications.
文摘Different Ziegler-Natta catalysts were employed to polymerize ethylene. To investigate the influences of reaction parameters, namely Al/Ti molar ratio, hydrogen and processing parameters, i.e. ethylene pressure and temperature, a Taguchi experimental design was worked out. An L27 orthogonal array was chosen to take the above-mentioned parameters and relevant interactions into account. Response surface method was the tool used to analyze the experimental design results. Al/Ti, ethylene pressure and temperature were selected as experimental design factors, and catalyst activity and polymerization yield were the response parameters. Increasing pressure, due to an increment in monomer accessibility, and rising Al/Ti, because of higher reduction in the catalysts, cause an increase in both polymerization yield and catalyst activity. Nonetheless, a higher temperature, thanks to reducing ethylene solubility in the slurry medium and partially catalyst destruction, lead to a reduction in both response parameters. A synergistic effect was also observed between temperature and pressure. All catalyst activities will reduce in the presence of hydrogen. Molecular weight also shows a decline in the presence of hydrogen as a transfer agent. However, the polydispersity index remains approximately intact. Using SEM, various morphologies, owing to different catalyst morphologies, were seen for the polyethylene.
基金This work was supported by the Natural Science Foundation of Heilongjiang Province (No. B0313) and Research Foundation of China University of Mining and Technology
文摘Many attempts have been made to control the regioselectivity for olefin poly- merization by varying the structures of ligands in catalysts. The regioselectivity of propylene polymerization was investigated by replacing a nitrogen atom in the Pd(II) diimine catalyst with an oxygen atom from density functional theory method at the B3LYP/LANL2DZ level. The results show that the 1,2-insertion becomes a rival mechanism to the 2,1-insertion when the nitrogen atom is replaced by the oxygen atom leading to an asymmetric environment in the catalyst, and that the steric effect in the asymmetrical catalyst plays an important part in the polymerization. The insertion barrier from 2-O is much higher than that from 2-N. A pyramid transition state was characterized for the catalyst to convert 2-O back to 2-N through internal rotation. The propylene prefers to coordinate at the opposite side of O in the catalyst. This is the driving force for the internal rotation. The results are significant for isotactic and syndiotactic polymerization.
文摘In order to fabricate porous ceramics with good properties and proper production cost,SiC-Al2 O3 porous ceramics were prepared at 1 450 ℃ for 2 h from the powders of commercial silicon carbide and white fused corundum via a polymeric replication method. Effects of the mass ratio of SiC powder to white fused corundum powder( 1 ∶ 3,1 ∶ 1 and 3 ∶ 1) on the appearance,phase composition,sintering properties and thermal shock resistance were investigated. The research results indicate that the as-prepared Si C-Al2 O3 porous ceramics have uniform pores,and their linear shrinkage ratio,apparent porosity and bulk density reach 4. 70%,67. 17%and 0. 83 g·cm-3,respectively. The thermal shock cycles from 1 400 ℃ to room temperature reach 23 including 15 cycles in air cooling condition and then 8 cycles in water cooling condition. Their main phases areα-Al2 O3 and Al6 Si2 O13 as well as a small amount of SiC and free SiO2. The as-prepared porous ceramic with the ratio of m( SiC) ∶ m( Al2 O3) = 1∶ 1 possesses prior comprehensive properties.
基金This work was supported by the National Natural Science Foundation of China
文摘It is found that there is a linear relationship between log P-w, and the parameter term V-f/0.5 E(coh) [1+(delta(w) - delta(p))(2)/delta(p)(2), from the water permeability (P-w) data of 21 polymers covering 4 orders of magnitude. This correlation may be useful in choosing membrane materials for dehumidification of gases.
文摘During the course of study, we found that both poly (N-isopropylacrylamide ) (PNIP) and PNIP-Ab (enzyme-labelled antibody)could be adhere tightly to a cellulose acetale-nitrate membrane, and that the retention of PNIP-Ab on the membrane increased over 30-fold when compared with the unconjugated Ab.Thus we used this characteristic to develop a novel immunoassay method-polymer enzyme linked immunoassay method: homogeneous antigen-antibody reaction and heterogeneous separation process. When applied for detection of human serum HBsAg, this immunoassay system can detect as little as 1 ng/ml of human serum HBsAg.
文摘To develop the green polymeric membrane electrolyte,-Polycaprolactone(PCL)was used as a host and the Ionic liquid(IL)(1-Ethyl-3-methylimidazolium tosylate)as a dopant.The IL is a source of mobile charges in the polymer electrolyte system.The composite membrane has been prepared by Hot Press method and then we characterised this membrane for ionic transportation.Formation of nanocomposite system has been ascertained from their XRD pattern.Interaction phenomenon was studied by ATR based FTIR and Laser Raman spectroscopic technique.Variation of conductivity with composition and temperature was studied with the aid of impedance spectroscopy data.
文摘This paper describes the effect of the composition of the oxide films on the properties of electrodes Ti/M<sub>x</sub>Ti<sub>y</sub>Sn<sub>z</sub>O<sub>2</sub> (M = Ir or Ru) prepared by the polymeric precursor method. XRD studies showed that the anodes are formed by solid solutions. The electrodes containing IrO<sub>2</sub> exhibit lower activity for the oxygen evolution reaction. The doping of the electrode surface with SnO<sub>2</sub> improves the catalytic properties of the anodes. However, it should be held in appropriate compositions, because the change in the atomic ratio of this element shows a marked effect on the stability of the oxides. Electrode Ti/Ir<sub>0.2</sub>Ti<sub>0.3</sub>Sn<sub>0.5</sub>O<sub>2</sub> has lower lifetime, i.e. 6 hours. The 20% decrease in the stoichiometric amount of SnO<sub>2</sub> increases the time to a value above 70 hours, as observed for Ti/Ir<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub>. Electrode Ti/Ru<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub> shows lifetime of 11 hours;therefore IrO<sub>2</sub> is more stable than RuO<sub>2</sub> under the conditions investigated. These results suggest that electrode Ti/Ir<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub> is promising for different applications, such as water electrolysis, capacitors and organic electrosynthesis.
基金The authors wish to acknowledge RECAT-Petrobras,Rede de Hidrogenio-MCTANP for their financial support and scholarship grants.
文摘In the current work, LaNiO3 perovskite was synthesized using the polymeric precursor method. The materials were thermally treated at 300°C for 2 hours, subsequently supported on alumina or zirconia and finally calcined at 800°C for 4 hours. The resulting samples were characterized by X-ray diffraction, thermogravimetry, BET surface area and thermo-programmed reduction. Steam reforming reactions were carried out at 750°C and 6 bar during 4 hours using a pilot reactor under a H2O:CH4 ratio of 2.5. The mass of catalysts was about 5.7 g. X-ray diffraction patterns confirmed the formation of the perovskite structure in all samples prepared. The results also showed that lanthanum nickelate was more efficient when supported on alumina than zirconia. Finally, it was observed that the methane conversion was approximately 94% and the selectivity to hydrogen was about 70%. In all cases low selectivity to CO and CO2 was verified.
文摘In today's education and teaching reform,the traditional teaching method in the teaching of polymer materials has been gradually replaced with various new teaching methods.Among them,the case analysis method is a very efective teaching method,which has been applied to the teaching of polymer materials.Through example-based teaching,students 125 participation can be effectively improved,and their theoretical knowledge can be fully utilized.This would have a positive role in promoting the improvement of students'knowledge system and their learning ability.In regard to this,this article analyzes the application of case analysis in the teaching of polymer materials so as to improve its efficiency and quality.
基金This work is supported by the National Natural Science Foundation of China (No.11402210), the Natural Science Foundation of Shanxi Province (No.2012011019-2), and the Doctoral Fund of Taiyuan University of Science and Technology (No.20152024).
文摘The irrationality of existing phase field model is analyzed and a modified phase-field model is proposed for polymer crystal growth, in which the parameters are obtained from real materials and very simple to use, and most importantly, no paradoxical parameters appeared in the model. Moreover, it can simulate different microstructure patterns owing to the use of a new different free energy function for the simulation of morphologies of polymer. The new free energy function considers both the cases of T〈Tm and T≥Tm, which is more reasonable than that in published literatures that all ignored the T≥Tm case. In order to show the validity of the modified model, the finite difference method is used to solve the model and different crystallization morphologies during the solidification process of isotactic polystyrene are obtained under different conditions. Numerical results show that the growth rate of the initial secondary arms is obviously increased as the anisotropy strength increases. But the anisotropy strength seems to have no apparent effect on the global growth rate. The whole growth process of the dendrite depends mainly upon the latent heat and the latent heat has a direct effect on the tip radius and tip velocity of side branches.