期刊文献+
共找到6,484篇文章
< 1 2 250 >
每页显示 20 50 100
ZnS@CdS/HAP复合微球的SILAR法制备及光催化性能
1
作者 杨莉 靳晓曼 +2 位作者 姜晓雪 王柯 罗玥 《中国环境科学》 EI CAS CSCD 北大核心 2024年第2期851-858,共8页
以酵母模板法制备的中空羟基磷灰石(HAP)微球为基底,通过连续离子层吸附反应法(SILAR)制备ZnS@CdS/HAP复合微球,利用XRD、SEM、UV-vis等表征手段分析材料的晶体结构、微观形貌和光吸收能力等,同时结合亚甲基蓝的光催化降解实验探讨复合... 以酵母模板法制备的中空羟基磷灰石(HAP)微球为基底,通过连续离子层吸附反应法(SILAR)制备ZnS@CdS/HAP复合微球,利用XRD、SEM、UV-vis等表征手段分析材料的晶体结构、微观形貌和光吸收能力等,同时结合亚甲基蓝的光催化降解实验探讨复合微球的光催化机理.结果表明:利用SILAR法成功实现了ZnS@CdS/HAP复合微球的制备,ZnS@CdS/HAP复合微球的直径约为3~5μm且分散性良好,在可见光区有良好的吸收性能,具有优异的光催化活性,在催化剂添加量1g/L、pH=7、温度为25℃的条件下,对50mL浓度为10mg/L的亚甲基蓝溶液可见光催化100min时去除率高达93%.机理分析证实,ZnS@CdS/HAP光催化可能存在的Z型电荷迁移机制在有效抑制光生载流子复合的同时有效抑制光生腐蚀的发生,提升了ZnS@CdS/HAP复合微球的光催化活性和稳定性. 展开更多
关键词 CDS ZNS 光腐蚀 hap 光催化 稳定性
下载PDF
rGO/CdS@HAP复合微球的光催化活性增强机理
2
作者 杨莉 姜晓雪 +2 位作者 靳晓曼 王柯 宋树浩 《化学工程》 CAS CSCD 北大核心 2024年第4期28-34,共7页
为提升CdS基复合材料的光催化活性和稳定性,运用水热法在CdS@HAP(羟基磷灰石)微球表面包覆rGO(还原氧化石墨烯)并制备rGO/CdS@HAP光催化材料,利用XRD(X射线衍射)、SEM(扫描电子显微镜)、UV-vis(紫外-可见吸收光谱)等手段分析材料的晶体... 为提升CdS基复合材料的光催化活性和稳定性,运用水热法在CdS@HAP(羟基磷灰石)微球表面包覆rGO(还原氧化石墨烯)并制备rGO/CdS@HAP光催化材料,利用XRD(X射线衍射)、SEM(扫描电子显微镜)、UV-vis(紫外-可见吸收光谱)等手段分析材料的晶体结构和理化性质,结合MB(亚甲基蓝)的光催化降解实验探讨rGO/CdS@HAP的光催化活性增强机理。结果表明:rGO/CdS@HAP具有中空微球结构,直径4—5μm,rGO以薄纱状均匀包裹在CdS@HAP表面;rGO/CdS@HAP具有优异的可见光吸收能力,在可见光辐射120 min后对MB的去除率高达94%,在光催化循环实验中表现出优异的光催化活性和稳定性。机理分析证实,由CdS和HAP构建的Ⅰ型异质结带隙较窄,有助于提升复合材料对可见光的吸收和利用,rGO在CdS@HAP表面的包覆提升载流子分离效率的同时为光生空穴提供高速的传输路径,有效抑制CdS的光腐蚀,从而实现rGO/CdS@HAP光催化活性和稳定性的显著增强。 展开更多
关键词 CDS hap rGO 复合微球 光腐蚀 光催化 稳定性
下载PDF
复合材料HAP@nZVI对Mn(Ⅱ)的吸附性能与机理
3
作者 彭惠靖 张卫民 +2 位作者 王玉罡 卢琪愿 王新宇 《材料导报》 EI CAS CSCD 北大核心 2024年第16期44-51,共8页
使用液相还原法制备羟基磷灰石与纳米零价铁(HAP@nZVI)复合材料,采用实验室静态批试验探讨其对模拟Mn(Ⅱ)污染地下水的处理效果及机理。表征结果显示,HAP@nZVI复合材料表面分布不均匀、松散多孔,nZVI不均匀分布在HAP表面及空隙中。静态... 使用液相还原法制备羟基磷灰石与纳米零价铁(HAP@nZVI)复合材料,采用实验室静态批试验探讨其对模拟Mn(Ⅱ)污染地下水的处理效果及机理。表征结果显示,HAP@nZVI复合材料表面分布不均匀、松散多孔,nZVI不均匀分布在HAP表面及空隙中。静态批试验结果表明,在溶液pH=5、复合材料用量0.36 g·L^(-1)、反应时间t=180 min条件下最有利于HAP@nZVI复合材料对Mn(Ⅱ)的吸附,在该试验条件范围内,Mn(Ⅱ)最大吸附量达到31.4 mg·g^(-1),准二级动力学模型和Langmuir吸附等温线模型可以较好地描述HAP@nZVI复合材料对Mn(Ⅱ)的吸附过程,吸附过程属于单层吸附且主要为化学吸附。反应后复合材料整体结构没有发生较大改变,-OH、Fe-O、P-O基团均参与了反应。XPS表征可以进一步证实HAP@nZVI对锰的吸附机理,O 1s和P_(2)p的结合能发生位移表明有表面络合作用发生;铁的溶出以及Fe^(0)消逝表明存在氧化还原反应;Ca_(2)p轨道的峰强降低说明存在离子交换。最后,将HAP@nZVI复合材料与已报道的吸附剂对锰离子的吸附性能进行对比,结果表明本研究制备的材料吸附性能良好。 展开更多
关键词 hap@nZVI复合材料 Mn(Ⅱ) 静态批试验 吸附
下载PDF
One-step cell biomanufacturing platform:porous gelatin microcarrier beads promote human embryonic stem cell-derived midbrain dopaminergic progenitor cell differentiation in vitro and survival after transplantation in vivo 被引量:1
4
作者 Lin Feng Da Li +10 位作者 Yao Tian Chengshun Zhao Yun Sun Xiaolong Kou Jun Wu Liu Wang Qi Gu Wei Li Jie Hao Baoyang Hu Yukai Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期458-464,共7页
Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a p... Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation. 展开更多
关键词 axonal integrity cell cryopreservation cellular environment cellular niche cell replacement therapy dopaminergic progenitors human pluripotent stem cell mechanical damage neuronal cell delivery Parkinson’s disease small-aperture gelatin microcarriers
下载PDF
Bio-inspired Hydroxyapatite/Gelatin Transparent Nanocomposites
5
作者 谭军军 WU Mingchen +2 位作者 LI Yuzhe PENG Jiamei 熊焰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期298-308,共11页
Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/ge... Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/gelatin nanocomposite was first developed.The nanocomposites have much better mechanical properties(elongation at break 29.9%,tensile strength 90.7 MPa,Young’s modulus 5.24 GPa)than pure gelatin films(elongation at break 9.3%,tensile strength 90.8 MPa,Young’s modulus 2.5 GPa).In addition,the composite films keep a high transmittance in visible wavelength range from 0%to 60%of the HA solid content.These differences in properties are attributed to the homogeneous distribution of HA nanoparticles in the gelatin polymer matrix and the strong interaction between the particle surfaces and the gelatin molecules.This protocol should be promising for HA-based nanocomposites with enhanced mechanical properties for biomedical applications. 展开更多
关键词 HYDROXYAPATITE NANOCOMPOSITES sodium citrate gelatin colloidal stability
下载PDF
Three-dimensional porous bimetallic metal–organic framework/gelatin aerogels: A readily recyclable peroxymonosulfate activator for efficient and continuous organic dye removal
6
作者 Wenlong Xiang Xian Zhang +1 位作者 Rou Xiao Yanhui Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期193-202,共10页
As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemmin... As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemming from their powdery nature.Engineering macroscopic structures from pulverous MOF is thus of great importance for broadening their practical applications.In this study,three-dimensional porous MOF aerogel catalysts were successfully fabricated for degrading organic dyes by activating peroxymonosulfate(PMS).MOF/gelatin aerogel(MOF/GA)catalysts were prepared by directly integrating bimetallic FeCo-BDC with gelatin solutions,followed by freeze-drying and low-temperature calcination.The FeCo-BDC-0.15/GA/PMS system exhibited remarkable performance in degrading various organic dyes,eliminating 99.2%of rhodamine B within a mere 5 min.Compared to the GA/PMS system,there was over a 300-fold increase in the reaction rate constant.Remarkably,high removal efficiency was maintained across varying conditions,including different solution pH,co-existing inorganic anions,and natural water matrices.Radical trapping experiments and electron paramagnetic resonance analysis revealed that the degradation involved radical(SO_(4)^(-)·)and non-radical routes(^(1)O_(2)),of which ^(1)O_(2) was dominant.Furthermore,even after a continuous 400-min reaction in a fixed-bed reactor at a liquid hourly space velocity of 27 h^(-1),the FeCo-BDC/GA composite sustained a degradation efficiency exceeding 98.7%.This work presents highly active MOF-gelatin aerogels for dye degradation and expands the potential for their large-scale,continuous treatment application in organic dye wastewater management. 展开更多
关键词 Catalyst Environment Wastewater Metal–organic framework gelatin aerogel PEROXYMONOSULFATE
下载PDF
Studies of XRD and FTIR on Synthesized Novel Hybrid Thin Film Made of Hydroxyapatite, Poly Vinyl Alcohol and Gelatin for Biomedical Application
7
作者 Farzana Rashid Suraya Sabrin Soshi Md. Abdul Gafur 《Materials Sciences and Applications》 2024年第9期336-349,共14页
With the modern advancement of treatment approaches in medical science, the application of biomaterials in tissue engineering provides a remarkable opportunity to overcome graft rejection as well as proper wound heali... With the modern advancement of treatment approaches in medical science, the application of biomaterials in tissue engineering provides a remarkable opportunity to overcome graft rejection as well as proper wound healing. In this study, novel hybrid films have been synthesized by incorporation of polyvinyl alcohol (PVA), gelatin, and gelatin with glycerin along with different concentrations of pre-prepared hydroxyapatite (HAP) by solution casting method at room temperature in a biosafety cabinet. Glutaraldehyde has been added as a crosslinker in this whole procedure. Fourier-transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD) have been conducted to observe and compare the structural and chemical stability of the synthesized hybrid film properties. The FTIR results and X-Ray Diffraction analyses confirmed the chemical interactions between HAP, PVA, gelatin, and glycerin have occurred. The crystallinity of HAP also remains in all the prepared hybrid film samples that are observed in XRD. It is expected that these newly synthesized hybrid films could be a better opportunity for various sectors of tissue engineering such as skin, bone, tendon, and cartilage. These synthesized hybrid films can be suitable for wound healing covering. These studies could be a new scope for long-term drug delivery directly on wound sites in diabetic gangrene foot or burn patients as well as cartilage or joint replacement therapy. 展开更多
关键词 XRD FTIR hap PVA gelatin
下载PDF
Development and Characterization of Hybrid Film Made of Hydroxyapatite, Poly Vinyl Alcohol and Gelatin for Biomedical Application
8
作者 Farzana Rashid Suraya Sabrin Soshi Md. Abdul Gafur 《Materials Sciences and Applications》 2024年第9期320-335,共16页
In the recent research field of bone tissue engineering, polymeric materials play an implacable role in mimes the natural behavior of hard and soft tissues. In some medical conditions such as diabetics, osteoarthritis... In the recent research field of bone tissue engineering, polymeric materials play an implacable role in mimes the natural behavior of hard and soft tissues. In some medical conditions such as diabetics, osteoarthritis, burns, or joint replacement conditions, this polymeric materials implication enhances the internal mechanical activities which result in the early recovery of disease by facilitating the wound healing process. In this study, hybrid films have been synthesized based on polyvinyl alcohol (PVA), gelatin, and gelatin with glycerin incorporated with different concentrations of pre-prepared hydroxyapatite (HAP) by solution casting method at room temperature in biosafety cabinet. Glutaraldehyde has been added as a crosslinker in this whole procedure. The mechanical property, swelling, and porosity percentage have been conducted to characterize the structural stability of the synthesized hybrid films. Porosity and swelling of samples are also represented by proper biocompatibility (>90% porosity and swelling in DDW and PBF vary between 287%~72%). Tensile strength (TS), E modulus (Young’s modulus), Elongation at maximum, and Elongation at break are observed to perceive the mechanical properties of hybrid film samples, which are compatible with mechanical properties of different tissue such as trabecular bone, articular cartilage, tendon, nerve and skin tissue. Though, biocompatibility tests both in vivo and in vitro are essential for clinical application in the future. However, the experiment carried out till now explains the true possibility of newly synthesized hybrid films for long-term drug delivery directly on wound sites for wound healing and burn dressing patients in head-neck surgery reconstruction, diabetic gangrene foot, as well as cartilage or joint replacement therapy. 展开更多
关键词 hap PVA gelatin Swelling Test Tensile Strength
下载PDF
Constructing a biofunctionalized 3D-printed gelatin/sodium alginate/chitosan tri-polymer complex scaffold with improvised biological andmechanical properties for bone-tissue engineering
9
作者 Amit Kumar Singh Krishna Pramanik Amit Biswas 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期57-73,共17页
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of... Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering. 展开更多
关键词 SCAFFOLD Biomaterial Sodium alginate CHITOSAN gelatin 3D printing Tissue engineering
下载PDF
HAPS评分联合WBC计数评估急性高脂血症胰腺炎严重程度的价值分析
10
作者 黄志强 林敏杰 +3 位作者 黄洪军 张举 孟兴成 吴志明 《浙江临床医学》 2024年第8期1182-1184,共3页
目的探讨无害性急性胰腺炎评分(HAPS)联合WBC计数评估急性高脂血症胰腺炎严重程度的价值。方法选取2021年1月至2023年5月确诊急性高脂血症性胰腺炎患者111例,其中非重症急性胰腺炎组(non-SAP)92例,重症急性胰腺炎组(SAP)19例。比较两组... 目的探讨无害性急性胰腺炎评分(HAPS)联合WBC计数评估急性高脂血症胰腺炎严重程度的价值。方法选取2021年1月至2023年5月确诊急性高脂血症性胰腺炎患者111例,其中非重症急性胰腺炎组(non-SAP)92例,重症急性胰腺炎组(SAP)19例。比较两组患者WBC计数、CRP、BMI值、血淀粉酶、甘油三酯、血糖、血钠、血钙水平以及HAPS评分的差异。结果两组患者HAPS评分及WBC计数比较,差异有统计学意义(P<0.05)。Logistic回归分析WBC计数和HAPS评分是急性高脂血症性胰腺炎的独立危险因素。ROC曲线显示HAPS评分联合WBC计数对急性高脂血症性胰腺炎严重程度有一定的预测价值(AUC=0.898,P<0.05)。结论HAPS评分联合WBC计数对急性高脂血症性胰腺炎严重程度具有较好评估价值,可作为早期预测评估指标。 展开更多
关键词 hapS评分 WBC计数 急性高脂血症性胰腺炎
下载PDF
Fish Gelatin-Based Film Containing Maillard Reaction Products:Properties and Its Use as Bag for Packing Chicken Skin Oil
11
作者 Krisana Nilsuwan Yolanda Victoria Rajagukguk +2 位作者 Umesh Patil Thummanoon Prodpran Soottawat Benjakul 《Journal of Renewable Materials》 EI CAS 2024年第6期1125-1143,共19页
Maillard reaction is a non-enzymatic browning reaction and its products(MRPs)have been proven to possess antioxidant properties.This research aimed to produce a fish gelatin-based packaging incorporated with MRPs to r... Maillard reaction is a non-enzymatic browning reaction and its products(MRPs)have been proven to possess antioxidant properties.This research aimed to produce a fish gelatin-based packaging incorporated with MRPs to retard lipid oxidation in chicken skin oil(CSO)during storage at ambient temperature(28℃–30℃).MRPs produced from fish gelatin and fructose(1:1,90℃,pH 11)showed the highest antioxidant properties compared to those prepared under other conditions.Different glycerol/MRPs ratios(30:0,25:5,20:10,15:15,10:20,5:25,0:30)were incorporated into the film and resulting films were characterized.Glycerol/MRPs at 10:20 ratio was chosen to add into the film prior to bag preparation via heat sealing method.CSO packed in the bag was monitored for lipid hydrolysis and oxidation during 15 days of storage(30℃±0.5℃,RH 52%±5%).After 15 days,quality deterioration was lower in CSO packed in the prepared gelatin bag as evidenced by lower FFA,TBARS,and volatile compounds in comparison with CSO packed in LDPE bag.Fish gelatin film added with MRPs possessed an excellent water vapor barrier property(WV-BP).This finding indicated that MRPs could be used to substitute glycerol and simultaneously could serve as antioxidants for the developed active bag.The novel packaging can be a potential alternative packaging for retarding lipid oxidation of lipid or fatty foods. 展开更多
关键词 Active film ANTIOXIDANT shelf-life extension Maillard reaction products fish gelatin
下载PDF
Ag-doped CNT/HAP nanohybrids in a PLLA bone scaffold show significant antibacterial activity
12
作者 Cijun Shuai Xiaoxin Shi +3 位作者 Kai Wang Yulong Gu Feng Yang Pei Feng 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第2期105-120,共16页
Bacterial infection is a major problem following bone implant surgery.Moreover,poly-l-lactic acid/carbon nanotube/hydroxyapatite(PLLA/CNT/HAP)bone scaffolds possess enhanced mechanical properties and show good bioacti... Bacterial infection is a major problem following bone implant surgery.Moreover,poly-l-lactic acid/carbon nanotube/hydroxyapatite(PLLA/CNT/HAP)bone scaffolds possess enhanced mechanical properties and show good bioactiv-ityregardingbonedefectregeneration.Inthisstudy,wesynthesizedsilver(Ag)-dopedCNT/HAP(CNT/Ag-HAP)nanohybrids via the partial replacing of calcium ions(Ca2+)in the HAP lattice with silver ions(Ag+)using an ion doping technique under hydrothermal conditions.Specifically,the doping process was induced using the special lattice structure of HAP and the abundant surface oxygenic functional groups of CNT,and involved the partial replacement of Ca2+in the HAP lattice by doped Ag+as well as the in situ synthesis of Ag-HAP nanoparticles on CNT in a hydrothermal environment.The result-ing CNT/Ag-HAP nanohybrids were then introduced into a PLLA matrix via laser-based powder bed fusion(PBF-LB)to fabricate PLLA/CNT/Ag-HAP scaffolds that showed sustained antibacterial activity.We then found that Ag+,which pos-sesses broad-spectrum antibacterial activity,endowed PLLA/CNT/Ag-HAP scaffolds with this activity,with an antibacterial effectiveness of 92.65%.This antibacterial effect is due to the powerful effect of Ag+against bacterial structure and genetic material,as well as the physical destruction of bacterial structures due to the sharp edge structure of CNT.In addition,the scaffold possessed enhanced mechanical properties,showing tensile and compressive strengths of 8.49 MPa and 19.72 MPa,respectively.Finally,the scaffold also exhibited good bioactivity and cytocompatibility,including the ability to form apatite layers and to promote the adhesion and proliferation of human osteoblast-like cells(MG63 cells). 展开更多
关键词 Ag-doped Carbon nanotube/hydroxyapatite(CNT/hap) Antibacterial properties Bone scaffold
下载PDF
Tissue Regeneration in Infected Wounds of Albino Rats Using Ciprofloxacin-Loaded Gelatin Microspheres Incorporated Collagen Scaffold: A Histological Approach with H&E Staining
13
作者 Kirubanandan Shanmugam 《Journal of Clinical and Nursing Research》 2024年第5期156-168,共13页
A wound care system consisting of ciprofloxacin-loaded gelatin microspheres impregnated in a macroporous collagen scaffold was created to effectively control wound infection and regenerate soft tissue at the wound sit... A wound care system consisting of ciprofloxacin-loaded gelatin microspheres impregnated in a macroporous collagen scaffold was created to effectively control wound infection and regenerate soft tissue at the wound site.Histological and biochemical alterations were observed in infected wounds treated with these scaffolds in Albino Wistar rats.Furthermore,the study examined the immediate and prolonged release of ciprofloxacin from the scaffolds,as well as their function in eliminating bacterial infections and expediting the process of skin healing and regeneration.The developed technique was followed in the streamlined process of creating these collagen scaffolds.Compared to untreated wounds,the group receiving scaffold treatment experienced a faster rate of wound closure.It was noted that the rate of infections was considerably reduced and that full soft tissue regeneration occurred within 12 days.The development of well-deposited collagen bundles in the treated groups was demonstrated by H&E staining,which verified the flawless regeneration of the dermis and epidermis.The antimicrobial agent-loaded gelatin microspheres impregnated into the porous collagen scaffold demonstrated remarkable soft tissue regeneration and efficient infection control at the wound site. 展开更多
关键词 gelatin microspheres Collagen Controlled release Wound healing
下载PDF
CTBolusTracking技术捕捉肝脏HAP成像最佳时间及临床应用研究
14
作者 陈静鸣 《中国科技期刊数据库 医药》 2024年第4期0087-0090,共4页
探讨CT Bolus Tracking技术对获取肝脏标准HAP图像技术要点及达到阈值后最佳触发扫描时间的选择。材料与方法 选择120例在本院行肝脏增强的患者,所有患者均行CT Bolus Tracking成像检查,在相同CT扫描条件下,设置三组不同触发时间(达阈值... 探讨CT Bolus Tracking技术对获取肝脏标准HAP图像技术要点及达到阈值后最佳触发扫描时间的选择。材料与方法 选择120例在本院行肝脏增强的患者,所有患者均行CT Bolus Tracking成像检查,在相同CT扫描条件下,设置三组不同触发时间(达阈值后6s、8s、10s)扫描。比较三组动脉期图像上肝实质、腹主动脉、门静脉主干、脾脏的CT值和图像质量评分。结果 第三组(达阈值后10s)肝实质、门静脉主干、脾脏CT值分别为(79.6±6.4)HU、(93.9±8.4)HU、(92.6±5.8)HU,明显高于第一组(59.3±7.9)HU、(67.3±5.2)HU、(63.6±3.9)HU和第二组(68.7±8.6)HU、(75.5±4.6)HU、(78.5±6.5)HU(P<0.05),三组的腹主动脉 CT 值分别为(265.8±10.3)HU、(253.2±8.5)HU、(257.5±9.8)HU,比较无明显差异(P>0.05)。第三组图像质量评分为(4.52±0.53)分,第一组为(4.05±0.86)分,第二组为(4.27±0.24)分,比较无明显差异(P>0.05)。结论 在肝脏增强CT中,延时扫描的时机通常是在注射造影剂后经过一定时间后进行的。当延时扫描延时10秒扫描,可以更好地捕捉到肝脏动脉晚期的影像特征。这对于诊断肝脏血管病变、肿瘤等疾病具有重要意义。 展开更多
关键词 多层螺旋CT 肝脏 hap图像 触发时间
下载PDF
Antibacterial Chitosan-Gelatin Microcapsules Modified with Green-Synthesized Silver Nanoparticles for Food Packaging 被引量:3
15
作者 Long Li Yanan Lu +3 位作者 Yu Chen Jiayi Bian Li Wang Li Li 《Journal of Renewable Materials》 SCIE EI 2023年第1期291-307,共17页
Silver nanoparticles(Ag NPs)are an effective antibacterial agent,but their application in food packaging is limited due to their easy agglomeration and oxidation.In this study,antibacterial microcapsules were fabricat... Silver nanoparticles(Ag NPs)are an effective antibacterial agent,but their application in food packaging is limited due to their easy agglomeration and oxidation.In this study,antibacterial microcapsules were fabricated using Ginkgo biloba essential oil(GBEO)as core material and chitosan and type B gelatin biopolymer as capsule mate-rials.These antibacterial microcapsules were then modified with green-synthesized Ag NPs,blended into the bio-polymer polylactic acid(PLA),and finally formed as films.Physicochemical properties and antibacterial activity against Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)were evaluated.Results showed that the prepared antibacterial PLA films exhibited excellent antibacterial activity against foodborne pathogens.Its TVC exceeded the limit value of 7 log CFU/g at 7 days compared with the 5 days of pure PLA films.Therefore,these films can extend the shelf life of grass carp fillets by 2–3 days under refrigeration. 展开更多
关键词 Silver nanoparticles chitosan gelatin MICROCAPSULES antibacterial activity food packaging
下载PDF
基于MAP法和HAP法的剩余污泥中磷回收技术研究进展
16
作者 滕俊 罗进财 +1 位作者 庞福静 董姗燕 《四川环境》 2023年第4期328-337,共10页
剩余污泥中磷的回收利用是实现污水和剩余污泥中磷元素循环利用的有效途径。综述了磷酸铵镁结晶法(MAP法)和磷酸钙结晶法(HAP法)两种磷回收技术,指出两种方法均是有效的磷回收技术,二者反应条件对磷回收的影响具有一定的相似性,不同之... 剩余污泥中磷的回收利用是实现污水和剩余污泥中磷元素循环利用的有效途径。综述了磷酸铵镁结晶法(MAP法)和磷酸钙结晶法(HAP法)两种磷回收技术,指出两种方法均是有效的磷回收技术,二者反应条件对磷回收的影响具有一定的相似性,不同之处在于MAP法可以同时将污水中的氨氮和磷酸盐回收去除,而HAP法适用于含磷废水中磷的去除回收;阐述了晶种是促进产物生成效率和提高产物纯度的有效方法,而污泥中有机物、相关离子或重金属等干扰因素则对产物生成效率产生一定影响;最后提出污泥厌氧发酵过程中有机物及其转化与磷释放和磷回收机制的影响将是今后的研究重点,以实现磷和有机酸等物质的同步回收利用。 展开更多
关键词 剩余污泥 磷回收 MAP法 hap 晶种
下载PDF
Enhanced wound healing and hemostasis with exosome-loaded gelatin sponges from human umbilical cord mesenchymal stem cells 被引量:1
17
作者 Xin-Mei Hu Can-Can Wang +3 位作者 Yu Xiao Peng Jiang Yu Liu Zhong-Quan Qi 《World Journal of Stem Cells》 SCIE 2023年第9期947-959,共13页
BACKGROUND Rapid wound healing remains a pressing clinical challenge,necessitating studies to hasten this process.A promising approach involves the utilization of human umbilical cord mesenchymal stem cells(hUC-MSCs)d... BACKGROUND Rapid wound healing remains a pressing clinical challenge,necessitating studies to hasten this process.A promising approach involves the utilization of human umbilical cord mesenchymal stem cells(hUC-MSCs)derived exosomes.The hypothesis of this study was that these exosomes,when loaded onto a gelatin sponge,a common hemostatic material,would enhance hemostasis and accelerate wound healing.AIM To investigate the hemostatic and wound healing efficacy of gelatin sponges loaded with hUC-MSCs-derived exosomes.METHODS Ultracentrifugation was used to extract exosomes from hUC-MSCs.Nanoparticle tracking analysis(NTA),transmission electron microscopy(TEM),and western blot techniques were used to validate the exosomes.In vitro experiments were performed using L929 cells to evaluate the cytotoxicity of the exosomes and their impact on cell growth and survival.New Zealand rabbits were used for skin irritation experiments to assess whether they caused adverse skin reactions.Hemolysis test was conducted using a 2%rabbit red blood cell suspension to detect whether they caused hemolysis.Moreover,in vivo experiments were carried out by implanting a gelatin sponge loaded with exosomes subcutaneously in Sprague-Dawley(SD)rats to perform biocompatibility tests.In addition,coagulation index test was conducted to evaluate their impact on blood coagulation.Meanwhile,SD rat liver defect hemostasis model and full-thickness skin defect model were used to study whether the gelatin sponge loaded with exosomes effectively stopped bleeding and promoted wound healing.RESULTS The NTA,TEM,and western blot experimental results confirmed that exosomes were successfully isolated from hUC-MSCs.The gelatin sponge loaded with exosomes did not exhibit significant cell toxicity,skin irritation,or hemolysis,and they demonstrated good compatibility in SD rats.Additionally,the effectiveness of the gelatin sponge loaded with exosomes in hemostasis and wound healing was validated.The results of the coagulation index experiment indicated that the gelatin sponge loaded with exosomes had significantly better coagulation effect compared to the regular gelatin sponge,and they showed excellent hemostatic performance in a liver defect hemostasis model.Finally,the full-thickness skin defect healing experiment results showed significant improvement in the healing process of wounds treated with the gelatin sponge loaded with exosomes compared to other groups.CONCLUSION Collectively,the gelatin sponge loaded with hUC-MSCs-derived exosomes is safe and efficacious for promoting hemostasis and accelerating wound healing,warranting further clinical application. 展开更多
关键词 Human umbilical cord mesenchymal stem cells EXOSOMES gelatin sponge SAFETY HEMOSTASIS Wound healing
下载PDF
Broiler Feet Gelatine
18
作者 Andrianarivony Nomenjanahary Tiona Baholy Robijaona Rahelivololoniaina 《Engineering(科研)》 CAS 2023年第4期234-241,共8页
The two waves period of the COVID-19 pandemic saw the use of hydro- alcoholic gel and the consumption of capsules containing improved traditional remedies. At one point, there was a stock-out and a price increase... The two waves period of the COVID-19 pandemic saw the use of hydro- alcoholic gel and the consumption of capsules containing improved traditional remedies. At one point, there was a stock-out and a price increase forthese products. Furthermore, in the food industry, the catering industry adopts gelatin in its current practice. Pig gelatin dominates the international market. And for some religious practices, pork is forbidden and yet these people consume them without taking notice. The production of gelatin from broiler feet seems economically viable because broiler feet are considered slaughterhouse waste that is sold at very low prices. The poultry industry has seen an increase in broiler farming over the last twenty years. However, the latter has all the characteristics required for the production of gelatin. It will therefore comply with the standards of use described in the international codex oenological for gelatins. Physical and chemical analyses such as, ash content, moisture content, and pH measurements were done for the extracted gelatins. Sensible elements are checked with ED XRF spectroscopy. All the results were good and showed without any doubt that broiler gelatin is edible. 展开更多
关键词 gelatin Gel Amino-Acids RETICULATION COLLAGEN Broiler-Feet
下载PDF
Alginate/gelatin/boron-doped hydroxyapatite-coated Ti implants:in vitro and in vivo evaluation of osseointegration
19
作者 Ahmet E.Pazarçeviren Zafer Evis +4 位作者 Tayfun Dikmen Korhan Altunbas Mustafa V.Yaprakçı Dilek Keskin Aysen Tezcaner 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第3期217-242,共26页
In this study,boron-doped hydroxyapatite(BHT)-loaded alginate/gelatin-based(A/G)hydrogel coating on Ti was fabricated to support bone integration through triggering osteoinduction,vascularization and immunomodulation.... In this study,boron-doped hydroxyapatite(BHT)-loaded alginate/gelatin-based(A/G)hydrogel coating on Ti was fabricated to support bone integration through triggering osteoinduction,vascularization and immunomodulation.Initially,highly reproducible,cheap and time-effective BHT was produced,which significantly promoted higher osteogenic and angiogenic maturation,while a mild innate immune response was observed.The immense potential of BHT was evidenced by the production of a gap-filling A/G/BHT interphase on Ti implants to mimic the osseous extracellular matrix to achieve functional bridging and exert control over the course of innate immune response.We initially aminosilanized the implant surface using 3-aminopropyl triethoxysilane,and then coated it with 0.25%w/v alginate with 20 mM 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide to allowthe A/G/BHT pre-gel to disperse evenly and covalently attach on the surface.The pre-gel was added with 0.2 M NaCl to homogeneously blend BHT in the structure without inducing ionic crosslinking.Then,the coated implants were freeze-dried and stored.The coated layer demonstrated high cohesive and adhesive strength,and 8-month-long shelf-life at room temperature and normal humidity.The A/G/BHT was able to coat an irregularly shaped Ti implant.Osteoblasts and endothelial cells thrived on the A/G/BHT,and it demonstrated greatly improved osteogenic and angiogenic capacity.Moreover,A/G/BHT maintained macrophage viability and generated an acute increase in immune response that could be resolved rapidly.Finally,A/G/BHT was shown to induce the robust integration of implant in a rabbit femur osteochondral model within 2months.Therefore,we concluded that A/G/BHT coatings could serve as amultifunctional reservoir,promoting the strong and rapid osseointegration of metallic implants. 展开更多
关键词 Boron Alginate/gelatin Implant coating Titanium Osteochondral model
下载PDF
3D-printed engineered bacteria-laden gelatin/sodium alginate composite hydrogels for biological detection of ionizing radiation
20
作者 Ziyuan Chen Jintao Shen +8 位作者 Meng Wei Wenrui Yan Qiucheng Yan Zhangyu Li Yaqiong Chen Feng Zhang Lina Du Bochuan Yuan Yiguang Jin 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第4期439-450,共12页
Nuclear safety is a global growing concern,where ionizing radiation(IR)is a major injury factor resulting in serious damage to organisms.The detection of IR is usually conducted with physical dosimeters;however,biolog... Nuclear safety is a global growing concern,where ionizing radiation(IR)is a major injury factor resulting in serious damage to organisms.The detection of IR is usually conducted with physical dosimeters;however,biological IR detection methods are deficient.Here,a living composite hydrogel consisting of engineered bacteria and gelatin/sodium alginate was 3D-printed for the biological detection of IR.Three strains of PrecA::egfp gene circuit-containing engineered Escherichia coli were constructed with IR-dependent fluorescence,and the DH5αstrain was finally selected due to its highest radiation response and fluorescence.Engineered bacteria were loaded in a series of gelatin/sodium alginate matrix hydrogels with different rheology,3D printability and bacterial applicability.A high-gelatin-content hydrogel containing 10%gelatin/1.25%sodium alginatewas optimal.The optimal living composite hydrogelwas 3D-printedwith the special bioink,which reported significant green fluorescence underγ-ray radiation.The living composite hydrogel provides a biological strategy for the detection of environmental ionizing radiation. 展开更多
关键词 3D printing ALGINATE Engineered bacteria gelatin HYDROGEL Ionizing radiation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部