期刊文献+
共找到5,554篇文章
< 1 2 250 >
每页显示 20 50 100
Bio-inspired Hydroxyapatite/Gelatin Transparent Nanocomposites
1
作者 谭军军 WU Mingchen +2 位作者 LI Yuzhe PENG Jiamei 熊焰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期298-308,共11页
Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/ge... Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/gelatin nanocomposite was first developed.The nanocomposites have much better mechanical properties(elongation at break 29.9%,tensile strength 90.7 MPa,Young’s modulus 5.24 GPa)than pure gelatin films(elongation at break 9.3%,tensile strength 90.8 MPa,Young’s modulus 2.5 GPa).In addition,the composite films keep a high transmittance in visible wavelength range from 0%to 60%of the HA solid content.These differences in properties are attributed to the homogeneous distribution of HA nanoparticles in the gelatin polymer matrix and the strong interaction between the particle surfaces and the gelatin molecules.This protocol should be promising for HA-based nanocomposites with enhanced mechanical properties for biomedical applications. 展开更多
关键词 HYDROXYAPATITE NANOCOMPOSITES sodium citrate gelatin colloidal stability
下载PDF
Constructing a biofunctionalized 3D-printed gelatin/sodium alginate/chitosan tri-polymer complex scaffold with improvised biological andmechanical properties for bone-tissue engineering
2
作者 Amit Kumar Singh Krishna Pramanik Amit Biswas 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期57-73,共17页
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of... Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering. 展开更多
关键词 SCAFFOLD Biomaterial Sodium alginate CHITOSAN gelatin 3D printing Tissue engineering
下载PDF
One-step cell biomanufacturing platform:porous gelatin microcarrier beads promote human embryonic stem cell-derived midbrain dopaminergic progenitor cell differentiation in vitro and survival after transplantation in vivo
3
作者 Lin Feng Da Li +10 位作者 Yao Tian Chengshun Zhao Yun Sun Xiaolong Kou Jun Wu Liu Wang Qi Gu Wei Li Jie Hao Baoyang Hu Yukai Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期458-464,共7页
Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a p... Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation. 展开更多
关键词 axonal integrity cell cryopreservation cellular environment cellular niche cell replacement therapy dopaminergic progenitors human pluripotent stem cell mechanical damage neuronal cell delivery Parkinson’s disease small-aperture gelatin microcarriers
下载PDF
Tissue Regeneration in Infected Wounds of Albino Rats Using Ciprofloxacin-Loaded Gelatin Microspheres Incorporated Collagen Scaffold: A Histological Approach with H&E Staining
4
作者 Kirubanandan Shanmugam 《Journal of Clinical and Nursing Research》 2024年第5期156-168,共13页
A wound care system consisting of ciprofloxacin-loaded gelatin microspheres impregnated in a macroporous collagen scaffold was created to effectively control wound infection and regenerate soft tissue at the wound sit... A wound care system consisting of ciprofloxacin-loaded gelatin microspheres impregnated in a macroporous collagen scaffold was created to effectively control wound infection and regenerate soft tissue at the wound site.Histological and biochemical alterations were observed in infected wounds treated with these scaffolds in Albino Wistar rats.Furthermore,the study examined the immediate and prolonged release of ciprofloxacin from the scaffolds,as well as their function in eliminating bacterial infections and expediting the process of skin healing and regeneration.The developed technique was followed in the streamlined process of creating these collagen scaffolds.Compared to untreated wounds,the group receiving scaffold treatment experienced a faster rate of wound closure.It was noted that the rate of infections was considerably reduced and that full soft tissue regeneration occurred within 12 days.The development of well-deposited collagen bundles in the treated groups was demonstrated by H&E staining,which verified the flawless regeneration of the dermis and epidermis.The antimicrobial agent-loaded gelatin microspheres impregnated into the porous collagen scaffold demonstrated remarkable soft tissue regeneration and efficient infection control at the wound site. 展开更多
关键词 gelatin microspheres Collagen Controlled release Wound healing
下载PDF
Relationship Between Degree of Starch Gelatinization and Quality Attributes of Parboiled Rice During Steaming 被引量:18
5
作者 Ebrahim TAGHINEZHAD Mohammad Hadi KHOSHTAGHAZA +2 位作者 Saeid MINAEI Toru SUZUKI Tom BRENNER 《Rice science》 SCIE CSCD 2016年第6期339-344,共6页
Paddy rice samples were parboiled by soaking at 65℃ for 180 min and steaming at 96℃ for 2–10 min,and then dried to achieve the final moisture content of 11% ± 1%. The degree of starch gelatinization (DSG) an... Paddy rice samples were parboiled by soaking at 65℃ for 180 min and steaming at 96℃ for 2–10 min,and then dried to achieve the final moisture content of 11% ± 1%. The degree of starch gelatinization (DSG) andseveral quality attributes (head rice yield (HRY), color value and hardness) of parboiled rice were measured.Results showed that DSG (46.8%–77.9%), color value (18.08–19.04) and hardness (118.6–219.2 N) allincreased following steaming. In contrast, the HRY increased (64.8%–67.1%) for steaming times between 2–4min but decreased (67.1%–65.0%) for steaming times between 4–10 min. Linear relations between DSG andcolor value (R2 = 0.87), and DSG and hardness (R2 = 0.88) were observed. The suitable DSG of parboiled riceleading to the highest HRY was found to be 62.5%, obtained following 4 min of steaming. 展开更多
关键词 parboiling process RICE head rice yield color value HARDNESS degree of starch gelatinization
下载PDF
The Principles of Starch Gelatinization and Retrogradation 被引量:5
6
作者 Masakuni Tako Yukihiro Tamaki +1 位作者 Takeshi Teruya Yasuhito Takeda 《Food and Nutrition Sciences》 2014年第3期280-291,共12页
The polysaccharides, such as κ-carrageenan, ι-carrageenan, agarose (agar), gellan gum, amylose, curdlan, alginate, and deacetylated rhamsan gum, in water changed into an ice-like structure with hydrogen bonding betw... The polysaccharides, such as κ-carrageenan, ι-carrageenan, agarose (agar), gellan gum, amylose, curdlan, alginate, and deacetylated rhamsan gum, in water changed into an ice-like structure with hydrogen bonding between polymer and water molecules, and between water-water molecules even at a concentration range of 0.1% - 1.0% (W/V) at room temperature, resulting in gelation. Such dramatic changes from liquid into gels have been understood at the molecular level in principles. In this review, we describe the structure-function relationship of starch on the view point of rheological aspects and discuss gelatinization and retrogradation mechanism including water molecules at molecular level. The starch molecules (amylose and amylopectin) play a dominant role in the center of the tetrahedral cavities occupied by water molecules, and the arrangement is partially similar to a tetrahedral structure in a gelatinization process. The arrangement should lead to a cooperative effect stabilizing extended regions of ice-like water with hydrogen bonding on the surface of the polymer molecules, where hemiacetal oxygen and hydroxyl groups might participate in hydrogen bonding with water molecules. Thus, a more extended ice-like hydrogen bonding within water molecules might be achieved in a retrogradation process. Though many investigations not only include starch gelatinization and retrogradaion, but also the gelling properties of the polysaccharides have been undertaken to elucidate the structure-function relationship, no other researchers have established mechanism at the molecular level. There is reasonable consistency in our investigations. 展开更多
关键词 PRINCIPLES STARCH AMYLOSE AMYLOPECTIN Hydrogen Bonding gelatinization and RETROGRADATION Mechanism
下载PDF
Variation in Gelatinization Characteristics of Storage Root Starch During Sweetpotato Growth and Development 被引量:3
7
作者 HUANGHua-hong LUGuo-quan ZHENGYi-fan 《Agricultural Sciences in China》 CAS CSCD 2005年第6期436-442,共7页
The differential scanning calorimetry (DSC) and rapid visco-analyzer (RVA) were used to determine the starch gelatinizationcharacteristics during the growth of three sweetpotato cultivars. The results showed that the ... The differential scanning calorimetry (DSC) and rapid visco-analyzer (RVA) were used to determine the starch gelatinizationcharacteristics during the growth of three sweetpotato cultivars. The results showed that the starch contents of threesweetpotato cultivars all decreased as growth progressed. Changes of the amylose contents differing in harvesting datesshould be discriminated according to the cultivars. At the early harvests amylose contents of Xushu18 and Zheda9201were relatively high, but those of Zhe3449 were low. As the growth duration of sweetpotatoes prolonged, the peaks ofDSC thermograms tended to occur at a low temperature and not to be so obstrusive with the increased width of the peak.Obvious decreases were observed, values of onset, peak and conclusion temperatures, as well as enthalpy of phasetransitions, as growth time lengthened. The peak viscosities, as determined through RVA, showed a rising tendency asgrowth progressed. In addition, statistical analysis revealed that there were correlations between the amylose content andgelatinization characteristics to some extent, which were affected by genotypes evidently. 展开更多
关键词 SWEETPOTATO Starch gelatinization characteristics Growth duration DSC RVA
下载PDF
Microscopic Structures of Endosperms Before and After Gelatinization in Rice Varieties with Varied Grain Quality 被引量:1
8
作者 YANGZe-min WANGWei-jin +3 位作者 LANSheng-yin XUZhen-xiu ZHOUZhu-qing WA 《Agricultural Sciences in China》 CAS CSCD 2003年第1期113-118,F003,T002,共8页
The microscopic structures of the endosperm of indica rice varieties with different quality before and after gelatinization were observed using scanning electron microscope. The results showed that the degree of gelat... The microscopic structures of the endosperm of indica rice varieties with different quality before and after gelatinization were observed using scanning electron microscope. The results showed that the degree of gelatinization varied in different parts of the grain and in different varieties under the same experimental conditions. The gelatinization of dorsal side was the most complete. Its cells were decomposed totally into puff-like or flocculent materials. The ventral side gelatinized less thoroughly, appearing agglomerate and some cell frames were still visible. The middle part gelatinized most incompletely and the cells were still integrated. Evident differences in gelatinization were observed among different varieties, the dorsal, ventral and middle parts of high quality varieties gelatinized more thoroughly than those of the corresponding parts of low quality varieties respectively. An obvious concavity often appeared in the middle of the cross-section of the low quality grains while the cross-section of high quality grains was normally flat. The same phenomenon was noted when comparing the early maturing indica rice and the late maturing indica rice. Varietal difference of gelatinization in dorsal sides was not as distinct as in middle parts and ventral sides. The difference among dorsal side, middle part and ventral side in gelatinization was greater in low quality grains than that of high quality grains. In addition, a lot of ruptured cells were observed in the cross-section of high quality rice, while few of them could be found in the low quality rice. Apparently, the number of ruptured cells is positively correlated with rice quality. Quality of rice grain also has positive correlation with the rate of water absorption and extension. High rates of water absorption and extension lead to better gelatinization of rice grain, and hence indicate good quality. 展开更多
关键词 Indica rice Grain quality gelatinization Microscopic structure
下载PDF
The impact of high hydrostatic pressure treatment time on the structure,gelatinization and thermal properties and in vitro digestibility of oat starch 被引量:5
9
作者 Jing Zhang Meili Zhang +2 位作者 Xue Bai Yakun Zhang Chen Wang 《Grain & Oil Science and Technology》 2022年第1期1-12,共12页
As a non-thermal processing technology,high hydrostatic pressure(HHP)can be used for starch modification without affecting the quality and flavour constituents.The effect of HHP on starch is closely related to the tre... As a non-thermal processing technology,high hydrostatic pressure(HHP)can be used for starch modification without affecting the quality and flavour constituents.The effect of HHP on starch is closely related to the treatment time of HHP.In this paper,we investigated the impacts of HHP treatment time(0,5,10,15,20,25,30 min)on the microstructure,gelatinization and thermal properties as well as in vitro digestibility of oat starch by scanning electron microscopy,X-ray diffraction,Fourier transform infrared spectroscopy,13C NMR and differential scanning calorimeter.Results showed that 5-min HHP treatment led to deformation and decreases in short-range ordered and doublehelix structures of oat starch granules,and further extending the treatment time to 15 min or above caused the formation of a gelatinous connection zone,increase of particle size,disintegration of short-range ordered and double-helix structures,and crystal structure change from A type to V type,indicating gelatinization occurred.Longer treatment time also resulted in the reduction in both the viscosity and the stability of oat starch.These indicated that HHP treatment time greatly influenced the microstructure of oat starch,and the oat starch experienced crystalline destruction(5 min),crystalline disintegration(15 min)and gelatinization(>15 min)during HHP treatment.Results of in vitro digestibility showed that the rapidly digestible starch(RDS)content declined first after treatment for 5 to 10 min then rose with the time extending from 15 to 30 min,indicating that longer pressure treatment time was unfavourable to the health benefits of oat starch for humans with diabetes and cardiovascular disease.Therefore,the 500-MPa treatment time for oat starch is recommended not more than 15 min.This study provides theoretical guidance for the application of HHP technology in starch modification and development of health foods. 展开更多
关键词 High hydrostatic pressure Oat starch STRUCTURE gelatinization property Thermal property In vitro digestibility
下载PDF
Antibacterial Chitosan-Gelatin Microcapsules Modified with Green-Synthesized Silver Nanoparticles for Food Packaging 被引量:2
10
作者 Long Li Yanan Lu +3 位作者 Yu Chen Jiayi Bian Li Wang Li Li 《Journal of Renewable Materials》 SCIE EI 2023年第1期291-307,共17页
Silver nanoparticles(Ag NPs)are an effective antibacterial agent,but their application in food packaging is limited due to their easy agglomeration and oxidation.In this study,antibacterial microcapsules were fabricat... Silver nanoparticles(Ag NPs)are an effective antibacterial agent,but their application in food packaging is limited due to their easy agglomeration and oxidation.In this study,antibacterial microcapsules were fabricated using Ginkgo biloba essential oil(GBEO)as core material and chitosan and type B gelatin biopolymer as capsule mate-rials.These antibacterial microcapsules were then modified with green-synthesized Ag NPs,blended into the bio-polymer polylactic acid(PLA),and finally formed as films.Physicochemical properties and antibacterial activity against Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)were evaluated.Results showed that the prepared antibacterial PLA films exhibited excellent antibacterial activity against foodborne pathogens.Its TVC exceeded the limit value of 7 log CFU/g at 7 days compared with the 5 days of pure PLA films.Therefore,these films can extend the shelf life of grass carp fillets by 2–3 days under refrigeration. 展开更多
关键词 Silver nanoparticles chitosan gelatin MICROCAPSULES antibacterial activity food packaging
下载PDF
Alginate/gelatin/boron-doped hydroxyapatite-coated Ti implants:in vitro and in vivo evaluation of osseointegration
11
作者 Ahmet E.Pazarçeviren Zafer Evis +4 位作者 Tayfun Dikmen Korhan Altunbas Mustafa V.Yaprakçı Dilek Keskin Aysen Tezcaner 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第3期217-242,共26页
In this study,boron-doped hydroxyapatite(BHT)-loaded alginate/gelatin-based(A/G)hydrogel coating on Ti was fabricated to support bone integration through triggering osteoinduction,vascularization and immunomodulation.... In this study,boron-doped hydroxyapatite(BHT)-loaded alginate/gelatin-based(A/G)hydrogel coating on Ti was fabricated to support bone integration through triggering osteoinduction,vascularization and immunomodulation.Initially,highly reproducible,cheap and time-effective BHT was produced,which significantly promoted higher osteogenic and angiogenic maturation,while a mild innate immune response was observed.The immense potential of BHT was evidenced by the production of a gap-filling A/G/BHT interphase on Ti implants to mimic the osseous extracellular matrix to achieve functional bridging and exert control over the course of innate immune response.We initially aminosilanized the implant surface using 3-aminopropyl triethoxysilane,and then coated it with 0.25%w/v alginate with 20 mM 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide to allowthe A/G/BHT pre-gel to disperse evenly and covalently attach on the surface.The pre-gel was added with 0.2 M NaCl to homogeneously blend BHT in the structure without inducing ionic crosslinking.Then,the coated implants were freeze-dried and stored.The coated layer demonstrated high cohesive and adhesive strength,and 8-month-long shelf-life at room temperature and normal humidity.The A/G/BHT was able to coat an irregularly shaped Ti implant.Osteoblasts and endothelial cells thrived on the A/G/BHT,and it demonstrated greatly improved osteogenic and angiogenic capacity.Moreover,A/G/BHT maintained macrophage viability and generated an acute increase in immune response that could be resolved rapidly.Finally,A/G/BHT was shown to induce the robust integration of implant in a rabbit femur osteochondral model within 2months.Therefore,we concluded that A/G/BHT coatings could serve as amultifunctional reservoir,promoting the strong and rapid osseointegration of metallic implants. 展开更多
关键词 Boron Alginate/gelatin Implant coating Titanium Osteochondral model
下载PDF
Broiler Feet Gelatine
12
作者 Andrianarivony Nomenjanahary Tiona Baholy Robijaona Rahelivololoniaina 《Engineering(科研)》 CAS 2023年第4期234-241,共8页
The two waves period of the COVID-19 pandemic saw the use of hydro- alcoholic gel and the consumption of capsules containing improved traditional remedies. At one point, there was a stock-out and a price increase... The two waves period of the COVID-19 pandemic saw the use of hydro- alcoholic gel and the consumption of capsules containing improved traditional remedies. At one point, there was a stock-out and a price increase forthese products. Furthermore, in the food industry, the catering industry adopts gelatin in its current practice. Pig gelatin dominates the international market. And for some religious practices, pork is forbidden and yet these people consume them without taking notice. The production of gelatin from broiler feet seems economically viable because broiler feet are considered slaughterhouse waste that is sold at very low prices. The poultry industry has seen an increase in broiler farming over the last twenty years. However, the latter has all the characteristics required for the production of gelatin. It will therefore comply with the standards of use described in the international codex oenological for gelatins. Physical and chemical analyses such as, ash content, moisture content, and pH measurements were done for the extracted gelatins. Sensible elements are checked with ED XRF spectroscopy. All the results were good and showed without any doubt that broiler gelatin is edible. 展开更多
关键词 gelatin Gel Amino-Acids RETICULATION COLLAGEN Broiler-Feet
下载PDF
3D-printed engineered bacteria-laden gelatin/sodium alginate composite hydrogels for biological detection of ionizing radiation
13
作者 Ziyuan Chen Jintao Shen +8 位作者 Meng Wei Wenrui Yan Qiucheng Yan Zhangyu Li Yaqiong Chen Feng Zhang Lina Du Bochuan Yuan Yiguang Jin 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第4期439-450,共12页
Nuclear safety is a global growing concern,where ionizing radiation(IR)is a major injury factor resulting in serious damage to organisms.The detection of IR is usually conducted with physical dosimeters;however,biolog... Nuclear safety is a global growing concern,where ionizing radiation(IR)is a major injury factor resulting in serious damage to organisms.The detection of IR is usually conducted with physical dosimeters;however,biological IR detection methods are deficient.Here,a living composite hydrogel consisting of engineered bacteria and gelatin/sodium alginate was 3D-printed for the biological detection of IR.Three strains of PrecA::egfp gene circuit-containing engineered Escherichia coli were constructed with IR-dependent fluorescence,and the DH5αstrain was finally selected due to its highest radiation response and fluorescence.Engineered bacteria were loaded in a series of gelatin/sodium alginate matrix hydrogels with different rheology,3D printability and bacterial applicability.A high-gelatin-content hydrogel containing 10%gelatin/1.25%sodium alginatewas optimal.The optimal living composite hydrogelwas 3D-printedwith the special bioink,which reported significant green fluorescence underγ-ray radiation.The living composite hydrogel provides a biological strategy for the detection of environmental ionizing radiation. 展开更多
关键词 3D printing ALGINATE Engineered bacteria gelatin HYDROGEL Ionizing radiation
下载PDF
Comparison of ethanol-soaked gelatin sponge and microspheres for hepatic arterioportal fistulas embolization in hepatic cellular carcinoma
14
作者 Guang-Sheng Yuan Li-Li Zhang +7 位作者 Zi-Tong Chen Cun-Jing Zhang Shu-Hui Tian Ming-Xia Gong Peng Wang Lei Guo Nan Shao Bin Liu 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第9期1595-1604,共10页
Hepatic arterioportal fistulas(APFs)are common in hepatocellular carcinoma(HCC).Moreover,correlated with poor prognosis,APFs often complicate antitumor treatments,including transarterial chemoembolization(TACE).AIM To... Hepatic arterioportal fistulas(APFs)are common in hepatocellular carcinoma(HCC).Moreover,correlated with poor prognosis,APFs often complicate antitumor treatments,including transarterial chemoembolization(TACE).AIM To compare the efficacy of ethanol-soaked gelatin sponges(ESG)and microspheres in the management of APFs and their impact on the prognosis of HCC.METHODS Data from patients diagnosed with HCC or hepatic APFs between June 2016 and December 2019 were retrospectively analyzed.Furthermore,APFs were embolized with ESG(group E)or microspheres(group M)during TACE.The primary outcomes were disease control rate(DCR)and objective response rate(ORR).The secondary outcomes included immediate and first follow-up APF improvement,overall survival(OS),and progression-free survival(PFS).RESULTS Altogether,91 participants were enrolled in the study,comprising 46 in group E and 45 in group M.The DCR was 93.5%and 91.1%in groups E and M,respectively(P=0.714).The ORRs were 91.3%and 66.7%in groups E and M,respectively(P=0.004).The APFs improved immediately after the procedure in 43(93.5%)patients in group E and 40(88.9%)patients in group M(P=0.485).After 2 mo,APF improvement was achieved in 37(80.4%)and 33(73.3%)participants in groups E and M,respectively(P=0.421).The OS was 26.2±1.4 and 20.6±1.1 mo in groups E and M,respectively(P=0.004),whereas the PFS was 16.6±1.0 and 13.8±0.7 mo in groups E and M,respectively(P=0.012).CONCLUSION Compared with microspheres,ESG embolization demonstrated a higher ORR and longer OS and PFS in patients of HCC with hepatic APFs. 展开更多
关键词 Hepatocellular carcinoma Arterioportal fistula ETHANOL gelatin sponge MICROSPHERE EMBOLIZATION
下载PDF
Development of Gelatin-Based Active Packaging and Its Application in Bread Preservation
15
作者 Hui Zheng Xiaohan Chen +4 位作者 Li Li Dawei Qi Jiale Wang Jiaying Lou Wenjun Wang 《Journal of Renewable Materials》 EI 2023年第10期3693-3709,共17页
The issue of plastic pollution has attracted widespread social attention.Gelatin is valued as a degradable bio-based material,especially as an edible active packaging material.However,the commonly used solution-castin... The issue of plastic pollution has attracted widespread social attention.Gelatin is valued as a degradable bio-based material,especially as an edible active packaging material.However,the commonly used solution-casting filmforming technology limits the mass production of gelatin films.In order to improve the production efficiency and enhance the commercial value of gelatin films,in this study,fish gelatin(FG)particles were successfully blended with essential oils(EOs)to prepare active films by melt extrusion technique,a common method for commercial plastics,and applied to bread preservation.FG and EOs showed good compatibility with each other.The elongation at break was enhanced in all samples of films containing EOs.The addition of EOs weakened the oxygen barrier properties of the FG films.The gelatin films containing clove EO showed the highest DPPH radical scavenging rate of 39.38%.The films containing oregano EO showed the highest antibacterial activity,with 98.84%and 99.86% against S.aureus and E.coli,respectively.The bread preservation results showed a slower microbial growth rate in the samples preserved by the active films.The bread samples preserved in commercial PE film showed mold on day 3,and the bread samples preserved in active gelatin film showed mold visible to the naked eye by day 7.This study demonstrates the potential of gelatin-based activated films for commercial application in baked goods preservation. 展开更多
关键词 Fish gelatin film essential oils melt extrusion bread preservation
下载PDF
Effect of Pre-Gelatinization Conditions on the Total Oxalate Content and Techno-Functional Properties of Taro (Colocasia esculenta) Flour
16
作者 Irene R. Oyim Joseph O. Anyango Mary N. Omwamba 《Food and Nutrition Sciences》 2022年第6期511-525,共15页
Like most roots and tubers, taro (Colocasia esculenta) corms have a short shelf-life due to the high moisture content, which aggravates their post-harvest losses. They also contain high amounts of calcium oxalates, li... Like most roots and tubers, taro (Colocasia esculenta) corms have a short shelf-life due to the high moisture content, which aggravates their post-harvest losses. They also contain high amounts of calcium oxalates, limiting their use in food applications. To help add value and diversify the use of taro corms as well as curb food losses, various strategies have been proposed, such processing of the corms into flour. This study aimed at evaluating the total oxalate content and techno-functional properties of taro flour as affected by the pre-gelatinization conditions (i.e., method and time). Pre-gelatinized taro flour was prepared by subjecting peeled and cleaned taro corms to roasting (190°C), boiling (100°C), and steaming (100°C) for 10 min, 20 min and 30 min, respectively, for each method, followed by drying at 55°C and milling. Generally, all the properties of flour were significantly affected by the pre-gelatinization conditions (P 0.05). The total oxalate content of the pre-gelatinized taro flour ranged from 33.26 to 76.90 mg/100g. Pre-gelatinization by boiling significantly reduced the oxalate content (56.7%), while roasting resulted in the least reduction (36.2%). The flour colour i.e. L<sup>*</sup>, hue, and chroma ranged from 38.47° - 70.30°, 42.64° - 69.43°, and 7.78° - 10.58°, respectively. Roasting resulted in flour with the largest L<sup>*</sup> (70.30°) and hue angle (69.43°). Boiling also resulted in flour with the highest bulk density (BD) (0.86 g/cm<sup>3</sup>) and the lowest water solubility index (WSI) (9.39%). Steamed flour had the highest water absorption index (WAI) (3.81 g/g), water holding capacity (WHC) (4.59 g/g), and swelling capacity (SC) (4.86 g/g). This study shows that pre-gelatinization (i.e. by boiling, steaming or roasting) significantly affects the total oxalate content and techno-functional properties of taro flour, which in turn influences its use in other food applications thus increasing the utilization and production of taro simultaneously. 展开更多
关键词 Taro Flour Pre-gelatinization Techno-Functional OXALATES
下载PDF
Enhanced wound healing and hemostasis with exosome-loaded gelatin sponges from human umbilical cord mesenchymal stem cells
17
作者 Xin-Mei Hu Can-Can Wang +3 位作者 Yu Xiao Peng Jiang Yu Liu Zhong-Quan Qi 《World Journal of Stem Cells》 SCIE 2023年第9期947-959,共13页
BACKGROUND Rapid wound healing remains a pressing clinical challenge,necessitating studies to hasten this process.A promising approach involves the utilization of human umbilical cord mesenchymal stem cells(hUC-MSCs)d... BACKGROUND Rapid wound healing remains a pressing clinical challenge,necessitating studies to hasten this process.A promising approach involves the utilization of human umbilical cord mesenchymal stem cells(hUC-MSCs)derived exosomes.The hypothesis of this study was that these exosomes,when loaded onto a gelatin sponge,a common hemostatic material,would enhance hemostasis and accelerate wound healing.AIM To investigate the hemostatic and wound healing efficacy of gelatin sponges loaded with hUC-MSCs-derived exosomes.METHODS Ultracentrifugation was used to extract exosomes from hUC-MSCs.Nanoparticle tracking analysis(NTA),transmission electron microscopy(TEM),and western blot techniques were used to validate the exosomes.In vitro experiments were performed using L929 cells to evaluate the cytotoxicity of the exosomes and their impact on cell growth and survival.New Zealand rabbits were used for skin irritation experiments to assess whether they caused adverse skin reactions.Hemolysis test was conducted using a 2%rabbit red blood cell suspension to detect whether they caused hemolysis.Moreover,in vivo experiments were carried out by implanting a gelatin sponge loaded with exosomes subcutaneously in Sprague-Dawley(SD)rats to perform biocompatibility tests.In addition,coagulation index test was conducted to evaluate their impact on blood coagulation.Meanwhile,SD rat liver defect hemostasis model and full-thickness skin defect model were used to study whether the gelatin sponge loaded with exosomes effectively stopped bleeding and promoted wound healing.RESULTS The NTA,TEM,and western blot experimental results confirmed that exosomes were successfully isolated from hUC-MSCs.The gelatin sponge loaded with exosomes did not exhibit significant cell toxicity,skin irritation,or hemolysis,and they demonstrated good compatibility in SD rats.Additionally,the effectiveness of the gelatin sponge loaded with exosomes in hemostasis and wound healing was validated.The results of the coagulation index experiment indicated that the gelatin sponge loaded with exosomes had significantly better coagulation effect compared to the regular gelatin sponge,and they showed excellent hemostatic performance in a liver defect hemostasis model.Finally,the full-thickness skin defect healing experiment results showed significant improvement in the healing process of wounds treated with the gelatin sponge loaded with exosomes compared to other groups.CONCLUSION Collectively,the gelatin sponge loaded with hUC-MSCs-derived exosomes is safe and efficacious for promoting hemostasis and accelerating wound healing,warranting further clinical application. 展开更多
关键词 Human umbilical cord mesenchymal stem cells EXOSOMES gelatin sponge SAFETY HEMOSTASIS Wound healing
下载PDF
基于HRM技术开发水稻糊化温度基因ALK功能标记 被引量:1
18
作者 王军 周晶 +9 位作者 陶亚军 李文奇 朱建平 范方军 王芳权 许扬 陈智慧 蒋彦婕 李霞 杨杰 《中国水稻科学》 CAS CSCD 北大核心 2024年第1期106-110,共5页
【目的】糊化温度是影响稻米蒸煮食味品质的重要指标,ALK是控制水稻糊化温度的主效基因,开发可快速高通量鉴定ALK基因型的功能标记有助于提高水稻品质改良的效率。【方法】根据ALK基因4198位、4329位和4330位存在的单碱基差异,设计基于... 【目的】糊化温度是影响稻米蒸煮食味品质的重要指标,ALK是控制水稻糊化温度的主效基因,开发可快速高通量鉴定ALK基因型的功能标记有助于提高水稻品质改良的效率。【方法】根据ALK基因4198位、4329位和4330位存在的单碱基差异,设计基于HRM技术检测的基因功能标记。【结果】通过PCR检测结合测序分析,筛选了ALK基因2个功能区域的功能标记ALKH4、ALKH5。利用ALKH4、ALKH5对81份籼稻品种、279份粳稻品种进行了ALK基因型检测,结果发现,16份粳稻和19份籼稻为G-GC基因型;51份粳稻为A-GC基因型;212份粳稻和62份籼稻为G-TT基因型。【结论】基于HRM技术开发的基因功能标记ALKH4、ALKH5可以快速高通量鉴定控制糊化温度ALK不同基因型,具有重要的应用价值。 展开更多
关键词 水稻 糊化温度 ALK 功能标记 HRM技术
下载PDF
糯小麦“山农糯麦1号”籽粒及淀粉品质分析
19
作者 于海霞 彭莉 +3 位作者 孙明涛 杨明 邓志英 田纪春 《粮油食品科技》 CAS CSCD 北大核心 2024年第2期100-105,共6页
为更好地了解糯小麦的品种特性,以山东省第一个审定的高产糯小麦“山农糯麦1号”为材料,研究其籽粒和淀粉特性。结果发现:该品种几乎不含直链淀粉(仅0.1%),较普通小麦具有较高的蛋白质含量(16.4%)和面粉白度(81.2%)。扫描电镜观察淀粉... 为更好地了解糯小麦的品种特性,以山东省第一个审定的高产糯小麦“山农糯麦1号”为材料,研究其籽粒和淀粉特性。结果发现:该品种几乎不含直链淀粉(仅0.1%),较普通小麦具有较高的蛋白质含量(16.4%)和面粉白度(81.2%)。扫描电镜观察淀粉粒度分布不均匀,A型淀粉颗粒较多。快速粘度分析(RVA)测定表明淀粉具有较低的糊化温度,较短的糊化时间,较低的峰值黏度、最终粘度和回生值。加工时面团吸水率明显较高,形成时间大于稳定时间。这些结果将为山农糯麦1号适于用作配粉和加工食品提供参考依据。 展开更多
关键词 糯性小麦 籽粒 淀粉 糊化特性 粉质特性
下载PDF
速食杂粮预熟化工艺研究
20
作者 孙军涛 王德国 +1 位作者 周明明 鲁明园 《许昌学院学报》 CAS 2024年第2期75-78,共4页
旨在对耐煮杂粮进行预熟化加工来提高耐煮杂粮食用的便捷性.采用常压蒸煮预熟化工艺,研究蒸煮时间对薏仁、红豆、莲子、麦仁和糯米的复水率和糊化度的影响,对比分析预熟化前后的杂粮熬制时间和品质变化.研究结果表明:薏仁、红豆、莲子... 旨在对耐煮杂粮进行预熟化加工来提高耐煮杂粮食用的便捷性.采用常压蒸煮预熟化工艺,研究蒸煮时间对薏仁、红豆、莲子、麦仁和糯米的复水率和糊化度的影响,对比分析预熟化前后的杂粮熬制时间和品质变化.研究结果表明:薏仁、红豆、莲子、麦仁和糯米常压蒸煮预熟化的蒸煮时间分别为110、65、40、40和35 min,预熟化薏仁、红豆、莲子、麦仁和糯米的复水率分别为171.5%、190%、170.67%、224%和182.67%,糊化度分别为90%、74.54%、80.1%、92.85%和96.97%.预熟化压片薏仁、红豆、莲子、麦仁和糯米的熬制时间分别为10、8、12、10和6 min,与未预熟化原料相比,熬制时间缩短了6.6、6.5、3、4和2.3倍,极大提高了杂粮食用的便捷性. 展开更多
关键词 杂粮 糊化度 复水性 蒸煮时间
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部