期刊文献+
共找到115篇文章
< 1 2 6 >
每页显示 20 50 100
A review of the literature on the use of CRISPR/Cas9 gene therapy to treat hepatocellular carcinoma 被引量:1
1
作者 ELHAM AMJAD RAFAELE PEZZANI BABAK SOKOUTI 《Oncology Research》 SCIE 2024年第3期439-461,共23页
Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emerge... Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emergence of therapeutic resistance in HCC patients,dlinicians have faced difficulties in treating such tumor.In addition,CRISPR/Cas9 screens were used to identify genes that improve the dlinical response of HCC patients.It is the objective of this article to summarize the current understanding of the use of the CRISPR/Cas9 system for the treatment of cancer,with a particular emphasis on HCC as part of the current state of knowledge.Thus,in order to locate recent developments in oncology research,we examined both the Scopus database and the PubMed database.The ability to selectively interfere with gene expression in combinatorial CRISPR/Cas9 screening can lead to the discovery of new effective HCC treatment regimens by combining clinically approved drugs.Drug resistance can be overcome with the help of the CRISPR/Cas9 system.HCC signature genes and resistance to treatment have been uncovered by genome-scale CRISPR activation screening although this method is not without limitations.It has been extensively examined whether CRISPR can be used as a tool for disease research and gene therapy.CRISPR and its applications to tumor research,particularly in HCC,are examined in this study through a review of the literature. 展开更多
关键词 CRISPR/Cas9 system gene therapy TUMOR Hepatocellular carcinoma Liver cancer gene editing
下载PDF
The concept of gene therapy for glaucoma:the dream that has not come true yet
2
作者 Robert Sulak Xiaonan Liu Adrian Smedowski 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期92-99,共8页
Gene therapies,despite of being a relatively new therapeutic approach,have a potential to become an important alternative to current treatment strategies in glaucoma.Since glaucoma is not considered a single gene dise... Gene therapies,despite of being a relatively new therapeutic approach,have a potential to become an important alternative to current treatment strategies in glaucoma.Since glaucoma is not considered a single gene disease,the identified goals of gene therapy would be rather to provide neuroprotection of retinal ganglion cells,especially,in intraocular-pressure-independent manner.The most commonly reported type of vector for gene delivery in glaucoma studies is adeno-associated virus serotype 2 that has a high tro pism to retinal ganglion cells,res ulting in long-term expression and low immunogenic profile.The gene thera py studies recruit inducible and genetic animal models of optic neuropathy,like DBA/2J mice model of high-tension glaucoma and the optic nerve crush-model.Reported gene therapy-based neuroprotection of retinal ganglion cells is targeting specific genes translating to growth factors(i.e.,brain derived neurotrophic factor,and its receptor TrkB),regulation of apoptosis and neurodegeneration(i.e.,Bcl-xl,Xiap,FAS system,nicotinamide mononucleotide adenylyl transferase 2,Digit3 and Sarm1),immunomodulation(i.e.,Crry,C3 complement),modulation of neuroinflammation(i.e.,e rythropoietin),reduction of excitotoxicity(i.e.,Com KIlα)and transcription regulation(i.e.,Max,Nrf2).On the other hand,some of gene therapy studies focus on lowering intra ocular pressure,by impacting genes involved in both,decreasing aqueous humor production(i.e.,aquaporin 1),and increasing outflow facility(i.e.,COX2,prostaglandin F2a receptor,RhoA/RhoA kinase signaling pathway,MMP1,Myocilin).The goal of this review is to summarize the current stateof-art and the direction of development of gene therapy strategies for glaucomatous neuropathy. 展开更多
关键词 adeno-associated virus gene editing gene therapy GLAUCOMA IOP lowering IOP-independent mechanisms neuroprotection optic nerve optic neuropathy retinal ganglion cells
下载PDF
Advances on genetic and genomic studies of ALV resistance 被引量:1
3
作者 Guodong Mo Ping Wei +2 位作者 Bowen Hu Qinghua Nie Xiquan Zhang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第1期1-14,共14页
Avian leukosis(AL)is a general term for a variety of neoplastic diseases in avian caused by avian leukosis virus(ALV).No vaccine or drug is currently available for the disease.Therefore,the disease can result in sever... Avian leukosis(AL)is a general term for a variety of neoplastic diseases in avian caused by avian leukosis virus(ALV).No vaccine or drug is currently available for the disease.Therefore,the disease can result in severe economic losses in poultry flocks.Increasing the resistance of poultry to ALV may be one effective strategy.In this review,we provide an overview of the roles of genes associated with ALV infection in the poultry genome,including endogenous retroviruses,virus receptors,interferon-stimulated genes,and other immune-related genes.Furthermore,some methods and techniques that can improve ALV resistance in poultry are discussed.The objectives are willing to provide some valuable references for disease resistance breeding in poultry. 展开更多
关键词 Avian leukosis Endogenous retrovirus gene editing IMMUNITY Interferon-stimulated genes Receptor Resistant breeding
下载PDF
Whole-genome methylation analysis reveals epigenetic variation between wild-type and nontransgenic cloned,ASMT transgenic cloned dairy goats generated by the somatic cell nuclear transfer 被引量:1
4
作者 Hao Wu Wendi Zhou +10 位作者 Haijun Liu Xudai Cui Wenkui Ma Haixin Wu Guangdong Li Likai Wang Jinlong Zhang Xiaosheng Zhang Pengyun Ji Zhengxing Lian Guoshi Liu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第1期98-113,共16页
Background:SCNT(somatic cell nuclear transfer)is of great significance to biological research and also to the livestock breeding.However,the survival rate of the SCNT cloned animals is relatively low compared to other... Background:SCNT(somatic cell nuclear transfer)is of great significance to biological research and also to the livestock breeding.However,the survival rate of the SCNT cloned animals is relatively low compared to other transgenic methods.This indicates the potential epigenetic variations between them.DNA methylation is a key marker of mammalian epigenetics and its alterations will lead to phenotypic differences.In this study,ASMT(acetylserotonin-Omethyltransferase)ovarian overexpression transgenic goat was produced by using SCNT.To investigate whether there are epigenetic differences between cloned and WT(wild type)goats,WGBS(whole-genome bisulfite sequencing)was used to measure the whole-genome methylation of these animals.Results:It is observed that the different m Cp G sites are mainly present in the intergenic and intronic regions between cloned and WT animals,and their CG-type methylation sites are strongly correlated.DMR(differentially methylated region)lengths are located around 1000 bp,mainly distributed in the exonic,intergenic and intronic functional domains.A total of 56 and 36 DMGs(differentially methylated genes)were identified by GO and KEGG databases,respectively.Functional annotation showed that DMGs were enriched in biological-process,cellularcomponent,molecular-function and other signaling pathways.A total of 10 identical genes related to growth and development were identified in GO and KEGG databases.Conclusion:The differences in methylation genes among the tested animals have been identified.A total of 10 DMGs associated with growth and development were identified between cloned and WT animals.The results indicate that the differential patterns of DNA methylation between the cloned and WT goats are probably caused by the SCNT.These novel observations will help us to further identify the unveiled mechanisms of somatic cell cloning technology,particularly in goats. 展开更多
关键词 Acetylserotonin-O-methyltransferase Dairy goat DNA methylation gene editing Somatic cell nuclear transfer
下载PDF
A cluster of mutagenesis revealed an osmotic regulatory role of the OsPIP1 genes in enhancing rice salt tolerance
5
作者 Leyuan Tao Bing Wang +6 位作者 Shichao Xin Wei Li Shengcai Huang Laihua Liu Jing Cui Qianru Zhang Xianguo Cheng 《The Crop Journal》 SCIE CSCD 2023年第4期1204-1217,共14页
Aquaporins play important regulatory roles in improving plant abiotic stress tolerance.To better understand whether the Os PIP1 genes collectively dominate the osmotic regulation in rice under salt stress,a cluster ed... Aquaporins play important regulatory roles in improving plant abiotic stress tolerance.To better understand whether the Os PIP1 genes collectively dominate the osmotic regulation in rice under salt stress,a cluster editing of the Os PIP1;1,Os PIP1;2 and Os PIP1;3 genes in rice was performed by CRISPR/Cas9 system.Sequencing showed that two mutants with Cas9-free,line 14 and line 18 were successfully edited.Briefly,line 14 deleted a single C base in both the Os PIP1;1 and Os PIP1;3 genes,and inserted a single T base in the Os PIP1;2 gene,respectively.While line 18 demonstrated an insertion of a single A base in the Os PIP1;1gene and a single T base in both the Os PIP1;2 and Os PIP1;3 genes,respectively.Multiplex editing of the Os PIP1 genes significantly inhibited photosynthetic rate and accumulation of compatible metabolites,but increased MDA contents and osmotic potentials in the mutants,thus delaying rice growth under salt stress.Functional loss of the Os PIP1 genes obviously suppressed the expressions of the Os PIP1,Os SOS1,Os CIPK24 and Os CBL4 genes,and increased the influxes of Na+and effluxes of K^(+)/H^(+)in the roots,thus accumulating more Na+in rice mutants under salt stress.This study suggests that the Os PIP1 genes are essential modulators collectively contributing to the enhancement of rice salt stress tolerance,and multiplex editing of the Os PIP1 genes provides insight into the osmotic regulation of the PIP genes. 展开更多
关键词 AQUAPORIN Multiplex gene editing CRISPR/Cas9 OsPIP1 genes Rice(Oryza sativa L.) Salt tolerance
下载PDF
Targeting miRNA by CRISPR/Cas in cancer:advantages and challenges
6
作者 Bashdar Mahmud Hussen Mohammed Fatih Rasul +10 位作者 Snur Rasool Abdullah Hazha Jamal Hidayat Goran Sedeeq Hama Faraj Fattma Abodi Ali Abbas Salihi Aria Baniahmad Soudeh Ghafouri-Fard Milladur Rahman Mark CGlassy Wojciech Branicki Mohammad Taheri 《Military Medical Research》 SCIE CAS CSCD 2024年第3期345-373,共29页
Clustered regulatory interspaced short palindromic repeats(CRISPR)has changed biomedical research and provided entirely new models to analyze every aspect of biomedical sciences during the last decade.In the study of ... Clustered regulatory interspaced short palindromic repeats(CRISPR)has changed biomedical research and provided entirely new models to analyze every aspect of biomedical sciences during the last decade.In the study of cancer,the CRISPR/CRISPR-associated protein(Cas)system opens new avenues into issues that were once unknown in our knowledge of the non-coding genome,tumor heterogeneity,and precision medicines.CRISPR/Cas-based geneediting technology now allows for the precise and permanent targeting of mutations and provides an opportunity to target small non-coding RNAs such as microRNAs(miRNAs).However,the development of effective and safe cancer gene editing therapy is highly dependent on proper design to be innocuous to normal cells and prevent introducing other abnormalities.This study aims to highlight the cutting-edge approaches in cancer-gene editing therapy based on the CRISPR/Cas technology to target miRNAs in cancer therapy.Furthermore,we highlight the potential challenges in CRISPR/Cas-mediated miRNA gene editing and offer advanced strategies to overcome them. 展开更多
关键词 CRISPR CRISPR/Cas9 CRISPR/Cas12 gene editing MIRNAS Cancer therapy
下载PDF
Development of a single transcript CRISPR/Cas9 toolkit for efficient genome editing in autotetraploid alfalfa
7
作者 Haixia Zhao Siyi Zhao +12 位作者 Yingping Cao Xiping Jiang Lijuan Zhao Zhimeng Li Mengqi Wang Ruijuan Yang Chuanen Zhou Zhaoming Wang Feng Yuan Dongmei Ma Hao Lin Wenwen Liu Chunxiang Fu 《The Crop Journal》 SCIE CSCD 2024年第3期788-795,共8页
Alfalfa(Medicago sativa.L.)is a globally significant autotetraploid legume forage crop.However,despite its importance,establishing efficient gene editing systems for cultivated alfalfa remains a formidable challenge.I... Alfalfa(Medicago sativa.L.)is a globally significant autotetraploid legume forage crop.However,despite its importance,establishing efficient gene editing systems for cultivated alfalfa remains a formidable challenge.In this study,we pioneered the development of a highly effective ultrasonic-assisted leaf disc transformation system for Gongnong 1 alfalfa,a variety widely cultivated in Northeast China.Subsequently,we created a single transcript CRISPR/Cas9(CRISPR_2.0)toolkit,incorporating multiplex gRNAs,designed for gene editing in Gongnong 1.Both Cas9 and gRNA scaffolds were under the control of the Arabidopsis ubiquitin-10 promoter,a widely employed polymeraseⅡconstitutive promoter known for strong transgene expression in dicots.To assess the toolkit’s efficiency,we targeted PALM1,a gene associated with a recognizable multifoliate phenotype.Utilizing the CRISPR_2.0 toolkit,we directed PALM1 editing at two sites in the wild-type Gongnong 1.Results indicated a 35.1%occurrence of editing events all in target 2 alleles,while no mutations were detected at target 1 in the transgenic-positive lines.To explore more efficient sgRNAs,we developed a rapid,reliable screening system based on Agrobacterium rhizogenes-mediated hairy root transformation,incorporating the visible reporter MtLAP1.This screening system demonstrated that most purple visible hairy roots underwent gene editing.Notably,sgRNA3,with an 83.0%editing efficiency,was selected using the visible hairy root system.As anticipated,tetra-allelic homozygous palm1 mutations exhibited a clear multifoliate phenotype.These palm1 lines demonstrated an average crude protein yield increase of 21.5%compared to trifoliolate alfalfa.Our findings highlight the modified CRISPR_2.0 system as a highly efficient and robust gene editing tool for autotetraploid alfalfa. 展开更多
关键词 ALFALFA gene editing CRISPR_2.0 toolkit Hairy root system Tetra-allelic homozygous mutants
下载PDF
Development of herbicide resistance genes and their application in rice 被引量:6
8
作者 Man Jin Lei Chen +1 位作者 Xing Wang Deng Xiaoyan Tang 《The Crop Journal》 SCIE CSCD 2022年第1期26-35,共10页
Rice is one of the most important food crops in the world.Weeds seriously affect the rice yield and grain quality.In recent years,there are tremendous progresses in the research and application of herbicideresistant g... Rice is one of the most important food crops in the world.Weeds seriously affect the rice yield and grain quality.In recent years,there are tremendous progresses in the research and application of herbicideresistant genes in rice worldwide.This article reviews the working mechanisms of six herbicides(glyphosate,glufosinate,acetolactate synthase inhibitor herbicides,acetyl-Co A carboxylase inhibitor herbicides,hydroxyhenylpyruvate dioxygenase(HPPD)inhibitor herbicides and dinitroaniline herbicides),the resistance mutations of the corresponding herbicide-target genes,and the herbicide detoxification mechanisms by non-target genes.Examples are provided on herbicide-resistant rice materials obtained by transformation of exogenous resistance genes,by artificial mutagenesis and mutant screening,and by modifying the target genes through gene editing.This paper also introduces the current application of herbicide-resistant rice,points out problems that may be caused by utilization of herbicide resistant rice and solutions to the problems,and discusses the future prospects for the development of herbicideresistant rice. 展开更多
关键词 RICE HERBICIDES Herbicide resistant genes gene editing MUTANT
下载PDF
Lipid nanoparticle-mediated CRISPR/Cas9 gene editing and metabolic engineering for anticancer immunotherapy 被引量:2
9
作者 Hyemin Ju Dongyoon Kim Yu-Kyoung Oh 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2022年第5期641-652,共12页
Metabolic engineering of the tumor microenvironment has emerged as a new strategy.Lactate dehydrogenase A(LDHA)is a prominent target for metabolic engineering.Here,we designed a cationic lipid nanoparticle formulation... Metabolic engineering of the tumor microenvironment has emerged as a new strategy.Lactate dehydrogenase A(LDHA)is a prominent target for metabolic engineering.Here,we designed a cationic lipid nanoparticle formulation for LDHA gene editing.The plasmid DNA delivery efficiency of our lipid nanoparticle formulations was screened by testing the fluorescence of lipid nanoparticles complexed to plasmid DNA encoding green fluorescence protein(GFP).The delivery efficiency was affected by the ratios of three components:a cationic lipid,cholesterol or its derivative,and a fusogenic lipid.The lipid nanoparticle designated formulation F3 was complexed to plasmid DNA co-encoding CRISPR-associated protein 9 and LDHA-specific sgRNA,yielding the lipoplex,pCas9-sgLDHA/F3.The lipoplex including GFP-encoding plasmid DNA provided gene editing in HeLa-GFP cells.Treatment of B16F10 tumor cells with pCas9-sgLDHA/F3 yielded editing of the LDHA gene and increased the pH of the culture medium.pCas9-sgLDHA/F3 treatment activated the interferon-gamma and granzyme production of T cells in culture.In vivo,combining pCas9-sgLDHA/F3 with immune checkpoint-inhibiting anti-PD-L1 antibody provided a synergistic antitumor effect and prolonged the survival of tumor model mice.This study suggests that combining metabolic engineering of the tumor microenvironment with immune checkpoint inhibition could be a valuable antitumor strategy. 展开更多
关键词 gene editing Lipid nanoparticle Metabolic engineering Lactate dehydrogenase A Tumor microenvironment
下载PDF
Development of mutants with varying flowering times by targeted editing of multiple SVP gene copies in Brassica napus L. 被引量:2
10
作者 Sunny Ahmar Yungu Zhai +8 位作者 Huibin Huang Kaidi Yu Muhammad Hafeez Ullah Khan Muhammad Shahid Rana Abdul Samad Shahid Ullah Khan Olalekan Amoo Chuchuan Fan Yongming Zhou 《The Crop Journal》 SCIE CSCD 2022年第1期67-74,共8页
Manipulation of flowering time to develop cultivars with desired maturity dates is fundamental in plant breeding.It is desirable to generate polyploid rapeseed(Brassica napus L.)germplasm with varying flowering time c... Manipulation of flowering time to develop cultivars with desired maturity dates is fundamental in plant breeding.It is desirable to generate polyploid rapeseed(Brassica napus L.)germplasm with varying flowering time controlled by a few genes.In the present study,Bna SVP,a rapeseed homolog of the Arabidopsis SVP(Short Vegetative Phase)gene,was characterized and a set of mutants was developed using a CRISPR/Cas9-based gene-editing tool.A single construct targeting multiple sites was successfully applied to precisely mutate four copies of Bna SVP.The induced mutations in these copies were stably transmitted to subsequent generations.Homozygous mutants with loss-of-function alleles and free transgenic elements were generated across the four Bna SVP homologs.All mutant T_(1)lines tested in two environments(summer and winter growing seasons)showed early-flowering phenotypes.The decrease in flowering time was correlated with the number of mutated Bna SVP alleles.The quadruple mutants showed the shortest flowering time,with a mean decrease of 40.6%–50.7%in length relative to the wild type under the two growth conditions.Our study demonstrates the quantitative involvement of Bna SVP copies in the regulation of flowering time and provides valuable resources for rapeseed breeding. 展开更多
关键词 Brassica napus Flowering time BnaSVP gene editing
下载PDF
Room for improvement in the treatment of pancreatic cancer: Novel opportunities from gene targeted therapy 被引量:1
11
作者 Michail Galanopoulos Aris Doukatas +2 位作者 Filippos Gkeros Nikos Viazis Christos Liatsos 《World Journal of Gastroenterology》 SCIE CAS 2021年第24期3568-3580,共13页
Pancreatic cancer is one of the highest and in fact,unchanged mortality-associated tumor,with an exceptionally low survival rate due to its challenging diagnostic approach.So far,its treatment is based on a combinatio... Pancreatic cancer is one of the highest and in fact,unchanged mortality-associated tumor,with an exceptionally low survival rate due to its challenging diagnostic approach.So far,its treatment is based on a combination of approaches(such as surgical resection with or rarely without chemotherapeutic agents),but with finite limits.Thus,looking for additional space to improve pancreatic tumorigenesis therapeutic approach,research has focused on gene therapy with unexpectedly growing horizons not only for the treatment of inoperable pancreatic disease,but also for its early stages.In vivo gene delivery viral vectors,despite few disadvantages(possible immunogenicity,toxicity,mutagenicity,or high cost),could be one of the most efficient cancer gene therapeutic strategies for clinical application due to their superiority compared with other systems(ex vivo delivery strategies).Their dominance consists of simple preparation,easy operation and a wide range of functions.Adenoviruses are one of the most common used vectors,inducing strong immune as well as inflammatory reactions.Oncolytic virotherapy,using the above mentioned in vivo viral vectors,is one of the most promising nonpathogenic,highly-selective cytotoxic anti-cancer therapy using anti-cancer agents with high anti-tumor potency and strong oncolytic effect.There have been a variety of targeted therapeutic and pre-clinical strategies tested for gene therapy in pancreatic cancer such as gene-editing systems(e.g.,clustered regularly interspaced palindromic repeats-Cas9),RNA interference technology(e.g.,microRNAs,short hairpin RNA or small interfering RNA),adoptive immunotherapy and vaccination(e.g.,chimeric antigen receptor T-cell therapy)with encouraging results. 展开更多
关键词 Pancreatic cancer gene therapy Viral vectors gene editing miRNA SIRNA Oncolytic virotherapy
下载PDF
A zwitterionic polymer-inspired material mediated efficient CRISPR-Cas9 gene editing 被引量:1
12
作者 Lingmin Zhang Langyu Yang +7 位作者 Jionghua Huang Sheng Chen Chuangjia Huang Yinshan Lin Ao Shen ZhouYikang Zheng Wenfu Zheng Shunqing Tang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2022年第5期666-678,共13页
The typeⅡ prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR/Cas9) adaptive immune system is a cutting-edge genome-editing toolbox.However,its applications are still limited b... The typeⅡ prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR/Cas9) adaptive immune system is a cutting-edge genome-editing toolbox.However,its applications are still limited by its inefficient transduction.Herein,we present a novel gene vector,the zwitterionic polymer-inspired material with branched structure (ZEBRA) for efficient CRISPR/Cas9 delivery.Polo-like kinase 1 (PLK1) acts as a master regulator of mitosis and overexpresses in multiple tumor cells.The Cas9 and single guide sgRNA (sgRNA)-encoded plasmid was transduced to knockout Plk1 gene,which was expected to inhibit the expression of PLK1.Our studies demonstrated that ZEBRA enabled to transduce the CRISPR/Cas9 system with large size into the cells efficiently.The transduction with ZEBRA was cell line dependent,which showed~10-fold higher in CD44-positive cancer cell lines compared with CD44-negative ones.Furthermore,ZEBRA induced highlevel expression of Cas9 proteins by the delivery of CRISPR/Cas9 and efficient gene editing of Plk1 gene,and inhibited the tumor cell growth significantly.This zwitterionic polymerinspired material is an effective and targeted gene delivery vector and further studies are required to explore its potential in gene delivery applications. 展开更多
关键词 CRISPR/Cas9 gene editing Zwitterionic polymers CD44 PLK1
下载PDF
Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize 被引量:9
13
作者 Yanmin Li Jinjie Zhu +5 位作者 Hao Wu Changlin Liu Changling Huang Jinhao Lan Yanming Zhao Chuanxiao Xie 《The Crop Journal》 SCIE CAS CSCD 2020年第3期449-456,共8页
Single-nucleotide polymorphisms contribute to phenotypic diversity in maize. Creation and functional annotation of point mutations has been limited by the low efficiency of conventional methods based on random mutatio... Single-nucleotide polymorphisms contribute to phenotypic diversity in maize. Creation and functional annotation of point mutations has been limited by the low efficiency of conventional methods based on random mutation. An efficient tool for generating targeted single-base mutations is desirable for both functional genomics and precise genetic improvement. The objective of this study was to test the efficiency of targeted C-to-T base editing of two non-allelic acetolactate synthase(ALS) in generating sulfonylurea herbicide-resistant mutants. A CRISPR/Cas9 nickase-cytidine deaminase fused with uracil DNA glycosylase inhibitor(UGI) was employed to achieve targeted conversion of cytosine to thymine in ZmALS1 and ZmALS2. Both protoplasts and recovered mutant plants showed the activity of the cytosine base editor, with an in vivo efficiency of up to 13.8%. Transgene-free edited plants harboring a homozygous ZmALS1 mutation or a ZmALS1 and ZmALS2 double mutation were tested for their resistance at a dose of up to 15-fold the recommended limit of chlorsulfuron, a sulfonylurea herbicide widely used in agriculture. Targeted base editing of C-to-T per se and a phenotype verified in the generated mutants demonstrates the power of base editing in precise maize breeding. 展开更多
关键词 Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize
下载PDF
CRISPR/Cas9-Targeted Knockout of Rice Susceptibility Genes OsDjA2 and OsERF104 Reveals Alternative Sources of Resistance to Pyricularia oryzae
14
作者 Fabiano T.P.KTÁVORA Anne Cécile MEUNIER +6 位作者 Aurore VERNET Murielle PORTEFAIX Joëlle MILAZZO Henri ADREIT Didier THARREAU Octávio LFRANCO Angela MEHTA 《Rice science》 SCIE CSCD 2022年第6期535-544,I0023-I0030,共18页
Rice genes OsDjA2 and OsERF104,encoding a chaperone protein and an APETELA2/ethylene-responsive factor,respectively,are strongly induced in a compatible interaction with blast fungus,and also have function in plant su... Rice genes OsDjA2 and OsERF104,encoding a chaperone protein and an APETELA2/ethylene-responsive factor,respectively,are strongly induced in a compatible interaction with blast fungus,and also have function in plant susceptibility validated through gene silencing.Here,we reported the CRISPR/Cas9 knockout of OsDjA2 and OsERF104 genes resulting in considerable improvement of blast resistance.A total of 15 OsDjA2(62.5%)and 17 OsERF104(70.8%)T_(0)transformed lines were identified from 24 regenerated plants for each target and used in downstream experiments.Phenotyping of homozygous T1 mutant lines revealed not only a significant decrease in the number of blast lesions but also a reduction in the percentage of diseased leaf area,compared with the infected control plants.Our results supported CRISPR/Cas9-mediated target mutation in rice susceptibility genes as a potential and alternative breeding strategy for building resistance to blast disease. 展开更多
关键词 gene editing plant-pathogen interaction Magnaporthe pathosystem plant immunity blast resistance S-gene RICE
下载PDF
Generation and characterization of a novel CYP3A1/2 double knockout rat model using CRISPR-Cas9 system
15
作者 WANG Xin LU Jian +5 位作者 SHAO Yan-jiao QIN Xuan LIU Dao-zhi CHEN Ang LI Da-li LIU Ming-yao 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2016年第10期1048-1048,共1页
OBJECTIVE Cytochrome P450(CYP)3A accounts for nearly 30%of total CYP enzymes in human liver and participates in the metabolism of over 50%of clinical drugs.CYP3A also plays an important role in the chemical metabolism... OBJECTIVE Cytochrome P450(CYP)3A accounts for nearly 30%of total CYP enzymes in human liver and participates in the metabolism of over 50%of clinical drugs.CYP3A also plays an important role in the chemical metabolism,toxicity,and carcinogenicity.New animal models are needed to investigate CYP3A functions.METHODS The CRISPR-Cas9 technology was used to generate Cyp3a1/2 double knockout rat model.The absence of Cyp3a1/2 expression was evaluated through PCR and immunostaining.Metabolic studies of the CYP3A substrates midazolam and nifedipine both in vitro and in vivo were conducted to verify that CYP3A1/2 was functional y inactive in KO rats.In addition,compensatory up-regulation of other P450 genes in Cyp3a1/2 KO rats was detected.RESULTS The Cyp3a1/2 double KO rats were viable and fertile,and had no obvious physiological abnormities.Compared with the wild-type(WT)rat,Cyp3a1/2 expression was completely absent in the liver of the KO rat.In vitro and in vivo metabolic studies of the CYP3A1/2 substrates indicated that CYP3A1/2 was functionally inactive in double KO rats.CONCLUSION The Cyp3a1/2 double KO rat model was successfully generated and characterized.The Cyp3a1/2 KO rats as a novel rodent animal model will be a valuable tool for the study of the physiological and pharmacological roles of CYP3A,and determining whether the absence of CYP3A results in non-CYP mediated metabolism or metabolism by other CYP isoforms. 展开更多
关键词 compensatory regulation CRISPR-Cas9 CYP3A drug metabolism gene editing rat
下载PDF
Therapeutic gene editing strategies using CRISPR-Cas9 for theβ-hemoglobinopathies
16
作者 James B.Papizan Shaina N.Porter +1 位作者 Akshay Sharma Shondra M.Pruett-Miller 《The Journal of Biomedical Research》 CAS CSCD 2021年第2期115-134,共20页
With advancements in gene editing technologies,our ability to make precise and efficient modifications to the genome is increasing at a remarkable rate,paving the way for scientists and clinicians to uniquely treat a ... With advancements in gene editing technologies,our ability to make precise and efficient modifications to the genome is increasing at a remarkable rate,paving the way for scientists and clinicians to uniquely treat a multitude of previously irremediable diseases.CRISPR-Cas9,short for clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9,is a gene editing platform with the ability to alter the nucleotide sequence of the genome in living cells.This technology is increasing the number and pace at which new gene editing treatments for genetic disorders are moving toward the clinic.Theβ-hemoglobinopathies are a group of monogenic diseases,which despite their high prevalence and chronic debilitating nature,continue to have few therapeutic options available.In this review,we will discuss our existing comprehension of the genetics and current state of treatment forβ-hemoglobinopathies,consider potential genome editing therapeutic strategies,and provide an overview of the current state of clinical trials using CRISPR-Cas9 gene editing. 展开更多
关键词 sickle cell disease sickle cell anemia fetal hemoglobin HEMOGLOBINOPATHY CRISPR gene editing genome engineering
下载PDF
Harnessing CRISPR-Cas system diversity for gene editing technologies
17
作者 Alexander McKay Gaetan Burgio 《The Journal of Biomedical Research》 CAS CSCD 2021年第2期91-106,共16页
The discovery and utilization of RNA-guided surveillance complexes,such as CRISPR-Cas9,for sequencespecific DNA or RNA cleavage,has revolutionised the process of gene modification or knockdown.To optimise the use of t... The discovery and utilization of RNA-guided surveillance complexes,such as CRISPR-Cas9,for sequencespecific DNA or RNA cleavage,has revolutionised the process of gene modification or knockdown.To optimise the use of this technology,an exploratory race has ensued to discover or develop new RNA-guided endonucleases with the most flexible sequence targeting requirements,coupled with high cleavage efficacy and specificity.Here we review the constraints of existing gene editing and assess the merits of exploiting the diversity of CRISPR-Cas effectors as a methodology for surmounting these limitations. 展开更多
关键词 CRISPR-Cas systems gene editing biological evolution DNA repair classification DNA transposable elements
下载PDF
Rapid delivery of Cas9 gene into the tomato cv.‘Heinz 1706’through an optimized Agrobacterium-mediated transformation procedure
18
作者 BEEMNET MENGESHA KASSAHUN BEUM-CHANG KANG +5 位作者 SU-JI BAE YE JIN NAM GRETEL FONSECA MUNDO GA-HUI KANG KYOUNGOOK KIM JEUNG-SUL HAN 《BIOCELL》 SCIE 2021年第1期199-215,共17页
Solanum lycopersicum‘Heinz 1706’is a pioneer model cultivar for tomato research,whose whole genome sequence valuable for genomics studies is available.Nevertheless,a genetic transformation procedure for this cultiva... Solanum lycopersicum‘Heinz 1706’is a pioneer model cultivar for tomato research,whose whole genome sequence valuable for genomics studies is available.Nevertheless,a genetic transformation procedure for this cultivar has not yet been reported.Meanwhile,various genome editing technologies such as transfection of clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated(Cas)ribonucleoprotein complexes into cells are in the limelight.Utilizing the Cas9-expressing genotype possessing a reference genome can simplify the verification of an off-target effect,resolve the economic cost of Cas9 endonuclease preparation,and avoid the complex assembly process together with single-guide RNA(sgRNA)in the transfection approach.Thus,this study was designed to generate Cas9-expressing‘Heinz 1706’lines by establishing an Agrobacterium tumefaciens-mediated transformation(ATMT)procedure.Here,we report a rapid and reproducible transformation procedure for‘Heinz 1706’by finetuning various factors:A.tumefaciens strain,pre-culture and co-culture durations,a proper combination of phytohormones at each step,supplementation of acetosyringone,and shooting/rooting method.Particularly,through eluding subculture and simultaneously inducing shoot elongation and rooting from leaf cluster,we achieved a short duration of three months for recovering the transgenic plants expressing Cas9.The presence of the Cas9 gene and its stable expression were confirmed by PCR and qRT-PCR analyses,and the Cas9 gene integrated into the T_(0) plant genome was stably transmitted to T_(1) progeny.Therefore,we anticipate that our procedure appears to ease the conventional ATMT in‘Heinz 1706’,and the created Cas9-expressing‘Heinz 1706’lines are ultimately useful in gene editing via unilateral transfection of sgRNA into the protoplasts. 展开更多
关键词 Transgenic plant PHYTOHORMONE ACETOSYRINGONE gene editing
下载PDF
Agrobacterium tumefaciens-mediated transformation of embryogenic callus and CRISPR/Cas9-mediated genome editing in‘Feizixiao'litchi 被引量:4
19
作者 Shujun Wang Guo Wang +2 位作者 Huanling Li Fang Li Jiabao Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第5期947-957,共11页
Litchi(Litchi chinensis Sonn.)is a type of commercially prevalent subtropical and tropical fruit.Since litchi has a highly heterozygous genetic background and a long reproductive cycle,conventional breeding methods(su... Litchi(Litchi chinensis Sonn.)is a type of commercially prevalent subtropical and tropical fruit.Since litchi has a highly heterozygous genetic background and a long reproductive cycle,conventional breeding methods(such as hybridization)have limited ability to nurture new litchi cultivars.Here,an efficient and stable Agrobacterium tumefaciens-mediated genetic transformation of embryogenic callus was established in‘Feizixiao’litchi.Transgenic materials were verified using polymerase chain reaction(PCR)analysis,β-glucuronidase(GUS)assay,and green fluorescent protein(GFP)assay.To implement the technology of the Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)/associated protein 9(CRISPR/Cas9)technology in‘Feizixiao’litchi and verify the validity of these transformation systems,the litchi polyphenol oxidase gene(LcPPO,JF926153)was knocked out.Various categories of mutations,covering base insertions,deletions,and substitutions,were found in transgenic materials via sequence analysis.The transformation system achieved high feasibility and efficiency,and the system of CRISPR/Cas9 was successfully employed to edit genes in‘Feizixiao’litchi.This work provides an essential foundation for investigating the functions of genes and accelerating litchi genetic improvement. 展开更多
关键词 LITCHI Litchi chinensis Sonn genetic transformation gene editing Polyphenol oxidase(PPO)
下载PDF
Recent Advances to Enhance Nutritional Quality of Rice
20
作者 Sundus ZAFAR XU Jianlong 《Rice science》 SCIE CSCD 2023年第6期523-536,共14页
The nutritional quality of rice is a major concern,along with the need to enhance productivity to feed the continuously growing population.Therefore,there is a requirement to breed high-yielding rice varieties with im... The nutritional quality of rice is a major concern,along with the need to enhance productivity to feed the continuously growing population.Therefore,there is a requirement to breed high-yielding rice varieties with improved nutritional quality that can help combat malnutrition,a global health issue.Undoubtedly,breeding approaches have played a significant role in increasing rice yield while enhancing its nutritional content.In addition to traditional breeding techniques,other recent approaches,such as genetic engineering,gene editing,omics methods,and agronomic practices,must also be employed to meet the nutritional needs of the current population.In this review,we offered detailed information on the development of nutritionally improved rice varieties through the enhancement of protein content,microand macronutrients,vitamins,and oil quality using genetic engineering approaches.We also identified QTLs associated with amino acids,proteins,and micronutrients in rice.Furthermore,omics approaches provide a range of tools and techniques for effectively exploring resources and understanding the molecular mechanisms involved in trait development.Omics branches,including transcriptomics,proteomics,ionomics,and metabolomics,are efficiently utilized for improving rice nutrition.Therefore,by utilizing the information obtained from these techniques and incorporating all of these recent approaches,we can effectively modify the rice genome,directly enhancing the nutritional value of rice varieties.This will help address the challenges of malnutrition in the years to come. 展开更多
关键词 RICE nutritional quality quantitative trait locus genetic engineering OMICS gene editing
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部