This study aimed to construct the dual-gene expression vector p Hsa-miR16-siRNA which can express human miR-16 and HBV X siRNA, and examine its regulatory effect on HBV gene expression in the HepG2.2.15 cell line. The...This study aimed to construct the dual-gene expression vector p Hsa-miR16-siRNA which can express human miR-16 and HBV X siRNA, and examine its regulatory effect on HBV gene expression in the HepG2.2.15 cell line. The expression vectors siR-1583 and pHsa-miR16-siRNA were designed and constructed. Hep G2.2.15 cells were transfected with the empty vector, siR-1583, pmiR-16 and pHsa-miR16-siRNA, respectively. ELISA was performed to measure the expression of HBsAg and HBeAg in the culture supernatant 48 and72 h post transfection. Fluorescence quantitative PCR was used to measure the HBV mRNA degradation efficiency and HBV DNA copy number. The results showed that the expression of HBV genes was significantly inhibited in Hep G2.2.15 cells transfected with siR-1583, pmiR-16 and pHsa-miR16-siRNA, respectively, when compared with that in cells transfected with the empty vectors, with the inhibitory effect of pHsa-miR16-siRNA being the most significant. ELISA showed that the inhibitory rates of HBs Ag and HBeAg in pHsa-miR16-siRNA transfected cells were correspondingly 87.3% and 85.0% at 48 h, and 88.6% and 86.5% at 72 h post transfection(P〈0.01 vs. control group). RT-PCR showed that the level of HBV mRNA decreased by 80.2%(t=–99.22, P〈0.01), the genomic HBV DNA by 92.8%(t=–73.06, P〈0.01), and the supernatant of HBV DNA copy number by 89.8%(t=–47.13, P〈0.01) in pHsa-miR16-siRNA transfected group. It was suggested that the dual-gene expression vector pHsa-miR16-siRNA can inhibit the replication of HBV more efficiently than a single-gene expression vector.展开更多
To investigate the molecular aspects of osteoblastic interactions with β tricalcium phosphate (β-TCP) particles, human osteoblast-like MG-63 cells were cultured with β-TCP particles at a density of 6 mg/mL cultur...To investigate the molecular aspects of osteoblastic interactions with β tricalcium phosphate (β-TCP) particles, human osteoblast-like MG-63 cells were cultured with β-TCP particles at a density of 6 mg/mL culture medium for 48 h. Then, the mRNA expression of selected genes were quantified by real-time polymerase chain reaction (PCR), including the attachment-related genes (α integrin and actin), the proliferation-related gene (c-jun), and the osteoblastic markers genes (type I collagen, osteonectin, alkaline phosphatase, RUNX2 and osteoclain). The results showed that β-TCP particles (the average size 809 nm) significantly promote the attachment and the proliferation of MG-63 cells, and slightly enhance the osteoblastic differentiation based on the analyses of the related genes expression. This study provided scientific evidences to better reveal the underlines of functions of β-TCP in bone repair.展开更多
Proanthocyanidins and flavanoids, both subfamilies of the polyphenols, are highly concentrated in different fruits and berries as well as in fruit pomace. They have shown to exhibit anti-cancer, anti-microbial, anti-o...Proanthocyanidins and flavanoids, both subfamilies of the polyphenols, are highly concentrated in different fruits and berries as well as in fruit pomace. They have shown to exhibit anti-cancer, anti-microbial, anti-oxidative, and im- mune-modulatory effects in vertebrates. Herein the effect of additional apple pomace or red-grape pomace in conven- tional piglet starter feeds were investigated in 36 young growing piglets. Immunological marker gene expression was quantified by quantitative real-time RT-PCR in white blood cells, and intestinal bacterial flora was investigated from weaning to three weeks post weaning. Polyphenol content in red-grape pomace, gut content and tissues were analyzed with HPLC. Flavan-3-ols (epicatechin and catechin) and proanthocyanidins (B1, B2 and C1) were identified in the gas- tro-intestinal tract content, whereas only traces could be detected in various piglet organs. The blood parameters, he- moglobin and hematocrit, were affected and down-regulated in all groups over testing period. In both pomace treated groups more thrombocytes were present compared to the standard feeding group. It turns out, that the pomace diets had greatest impact on the bacterial content in the colon. Results demonstrate that feeding apple pomace and red- grape pomace tended to increase the number of total colonic bacteria. Steptococci/Enterococci increased in the red- grape pomace. C. perfringens was not detectable at the second time point. The number of lactobacilli increased in both applied diets. The number of Clostridium perfringens decreased with the age of the piglets. Trends of mRNA expression changes were found in white blood cell (WBC) between different feeding regimens, since the expression variability in the groups was very high. Between the different time points there were significant differences within the apple pomace group, where TNF? (p = 0.033), NF?B (p = 0.024) and Caspase 3 (p = 0.019) mRNA expression increased signifi- cantly during treatment. We conclude that both polyphenol rich feedings have the potential to positively influence the intestinal flora, blood parameters, and WBC mRNA gene expression pattern of immunological marker genes.展开更多
基金supported by grants from the Independent Innovation Research Fund of Huazhong University of Science and Technology(No.2016YXMS200)Natural Science Foundation of the Science and Technology Department of Hubei Province(No.ZRMS2017000406)
文摘This study aimed to construct the dual-gene expression vector p Hsa-miR16-siRNA which can express human miR-16 and HBV X siRNA, and examine its regulatory effect on HBV gene expression in the HepG2.2.15 cell line. The expression vectors siR-1583 and pHsa-miR16-siRNA were designed and constructed. Hep G2.2.15 cells were transfected with the empty vector, siR-1583, pmiR-16 and pHsa-miR16-siRNA, respectively. ELISA was performed to measure the expression of HBsAg and HBeAg in the culture supernatant 48 and72 h post transfection. Fluorescence quantitative PCR was used to measure the HBV mRNA degradation efficiency and HBV DNA copy number. The results showed that the expression of HBV genes was significantly inhibited in Hep G2.2.15 cells transfected with siR-1583, pmiR-16 and pHsa-miR16-siRNA, respectively, when compared with that in cells transfected with the empty vectors, with the inhibitory effect of pHsa-miR16-siRNA being the most significant. ELISA showed that the inhibitory rates of HBs Ag and HBeAg in pHsa-miR16-siRNA transfected cells were correspondingly 87.3% and 85.0% at 48 h, and 88.6% and 86.5% at 72 h post transfection(P〈0.01 vs. control group). RT-PCR showed that the level of HBV mRNA decreased by 80.2%(t=–99.22, P〈0.01), the genomic HBV DNA by 92.8%(t=–73.06, P〈0.01), and the supernatant of HBV DNA copy number by 89.8%(t=–47.13, P〈0.01) in pHsa-miR16-siRNA transfected group. It was suggested that the dual-gene expression vector pHsa-miR16-siRNA can inhibit the replication of HBV more efficiently than a single-gene expression vector.
基金National Natural Science Foundation of China(No.81190133)Self-Determined and Innovation Research Funds of WUT(No.2012-IV-069)
文摘To investigate the molecular aspects of osteoblastic interactions with β tricalcium phosphate (β-TCP) particles, human osteoblast-like MG-63 cells were cultured with β-TCP particles at a density of 6 mg/mL culture medium for 48 h. Then, the mRNA expression of selected genes were quantified by real-time polymerase chain reaction (PCR), including the attachment-related genes (α integrin and actin), the proliferation-related gene (c-jun), and the osteoblastic markers genes (type I collagen, osteonectin, alkaline phosphatase, RUNX2 and osteoclain). The results showed that β-TCP particles (the average size 809 nm) significantly promote the attachment and the proliferation of MG-63 cells, and slightly enhance the osteoblastic differentiation based on the analyses of the related genes expression. This study provided scientific evidences to better reveal the underlines of functions of β-TCP in bone repair.
基金This study was supported by the Bayerisches Staatsmin-isterium für Landwirtschaft und Forsten,L/a-7606.2-494.
文摘Proanthocyanidins and flavanoids, both subfamilies of the polyphenols, are highly concentrated in different fruits and berries as well as in fruit pomace. They have shown to exhibit anti-cancer, anti-microbial, anti-oxidative, and im- mune-modulatory effects in vertebrates. Herein the effect of additional apple pomace or red-grape pomace in conven- tional piglet starter feeds were investigated in 36 young growing piglets. Immunological marker gene expression was quantified by quantitative real-time RT-PCR in white blood cells, and intestinal bacterial flora was investigated from weaning to three weeks post weaning. Polyphenol content in red-grape pomace, gut content and tissues were analyzed with HPLC. Flavan-3-ols (epicatechin and catechin) and proanthocyanidins (B1, B2 and C1) were identified in the gas- tro-intestinal tract content, whereas only traces could be detected in various piglet organs. The blood parameters, he- moglobin and hematocrit, were affected and down-regulated in all groups over testing period. In both pomace treated groups more thrombocytes were present compared to the standard feeding group. It turns out, that the pomace diets had greatest impact on the bacterial content in the colon. Results demonstrate that feeding apple pomace and red- grape pomace tended to increase the number of total colonic bacteria. Steptococci/Enterococci increased in the red- grape pomace. C. perfringens was not detectable at the second time point. The number of lactobacilli increased in both applied diets. The number of Clostridium perfringens decreased with the age of the piglets. Trends of mRNA expression changes were found in white blood cell (WBC) between different feeding regimens, since the expression variability in the groups was very high. Between the different time points there were significant differences within the apple pomace group, where TNF? (p = 0.033), NF?B (p = 0.024) and Caspase 3 (p = 0.019) mRNA expression increased signifi- cantly during treatment. We conclude that both polyphenol rich feedings have the potential to positively influence the intestinal flora, blood parameters, and WBC mRNA gene expression pattern of immunological marker genes.