The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed...The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.展开更多
BACKGROUND Studies show that the antifibrotic mechanism of taurine may involve its inhibition of the activation and proliferation of hepatic stellate cells(HSCs). Since the molecular mechanism of taurine-mediated anti...BACKGROUND Studies show that the antifibrotic mechanism of taurine may involve its inhibition of the activation and proliferation of hepatic stellate cells(HSCs). Since the molecular mechanism of taurine-mediated antifibrotic activity has not been fully unveiled and is little studied, it is imperative to use "omics" methods to systematically investigate the molecular mechanism by which taurine inhibits liver fibrosis.AIM To establish a network including transcriptomic and protein-protein interaction data to elucidate the molecular mechanism of taurine-induced HSC apoptosis.METHODS We used microarrays, bioinformatics, protein-protein interaction(PPI) network,and sub-modules to investigate taurine-induced changes in gene expression in human HSCs(LX-2). Subsequently, all of the differentially expressed genes(DEGs) were subjected to gene ontology function and Kyoto encyclopedia of genes and genomes pathway enrichment analysis. Furthermore, the interactions of DEGs were explored in a human PPI network, and sub-modules of the DEGs interaction network were analyzed using Cytoscape software.RESULTS A total of 635 DEGs were identified in taurine-treated HSCs when compared with the controls. Of these, 304 genes were statistically significantly up-regulated, and 331 down-regulated. Most of these DEGs were mainly located on the membrane and extracellular region, and are involved in the biological processes of signal transduction, cell proliferation, positive regulation of extracellular regulated protein kinases 1(ERK1) and ERK2 cascade, extrinsic apoptotic signaling pathway and so on. Fifteen significantly enriched pathways with DEGs were identified, including mitogen-activated protein kinase(MAPK) signaling pathway, peroxisome proliferators-activated receptor signaling pathway,estrogen signaling pathway, Th1 and Th2 cell differentiation, cyclic adenosine monophosphate signaling pathway and so on. By integrating the transcriptomics and human PPI data, nine critical genes, including MMP2, MMP9, MMP21,TIMP3, KLF10, CX3CR1, TGFB1, VEGFB, and EGF, were identified in the PPI network analysis.CONCLUSION Taurine promotes the apoptosis of HSCs via up-regulating TGFB1 and then activating the p38 MAPK-JNK-Caspase9/8/3 pathway. These findings enhance the understanding of the molecular mechanism of taurine-induced HSC apoptosis and provide references for liver disorder therapy.展开更多
It is generally assumed that behavior results from an interaction between susceptible genes and environmental stimuli during critical life stages.The present article reviews the main theoretical and practical concepts...It is generally assumed that behavior results from an interaction between susceptible genes and environmental stimuli during critical life stages.The present article reviews the main theoretical and practical concepts in the research of gene environment interaction,emphasizing the need for models simulating real life complexity.We review a novel approach to study gene environment interaction in which a brief post-natal interference with the expression of multiple genes,by hindering the activity of the ubiquitous transcription factor specificity protein 1(Sp1) is followed by later-in-life exposure of rats to stress.Finally,this review discusses the role of peripheral processes in behavioral responses,with the Sp1 model as one example demonstrating how specific behavioral patterns are linked to modulations in both peripheral and central physiological processes.We suggest that models,which take into account the tripartite reciprocal interaction between the central nervous system,peripheral systems and environmental stimuli will advance our understanding of the complexity of behavior.展开更多
AIM:To investigate the interaction of interleukin-23 receptor(IL23R)(rs1004819 and rs2201841),autophagy-related 16-like 1(ATG16L1)(rs2241880), caspase recruitment domain-containing protein 15 (CARD15)genes,and IBD5 lo...AIM:To investigate the interaction of interleukin-23 receptor(IL23R)(rs1004819 and rs2201841),autophagy-related 16-like 1(ATG16L1)(rs2241880), caspase recruitment domain-containing protein 15 (CARD15)genes,and IBD5 locus in Crohn's disease(CD) patients. METHODS:A total of 315 unrelated subjects with CD and 314 healthy controls were genotyped.Interactions and specific genotype combinations of a total of eight variants were tested.The variants of IBD5locus(IGR2198a_1 rs11739135 and IGR2096a_1 rs12521868),CARD15(R702W rs2066845 and L1007fs rs2066847),ATG16L1(rs2241880)and IL23R (rs1004819,rs2201841)genes were genotyped by PCR-RFLP,the G908R(rs2066844)in CARD15 was determined by direct sequencing. RESULTS:The association of ATG16L1 T300A with CD was confirmed[P=0.004,odds ratio(OR)=1.69, 95%CI:1.19-2.41],and both IL23R variants were found to represent significant risk for the disease(P= 0.008,OR=2.05,95%CI:1.20-3.50 for rs1004819 AA;P<0.001,OR=2.97,95%CI:1.65-5.33 for rs2201841 CC).Logistic regression analysis of pairwise interaction of the inflammatory bowel disease (IBD)loci indicated that IL23R,ATG16L1,CARD15 and IBD5(IGR2198a_1)contribute independently to disease risk.We also analysed the specific combina- tions by pair of individual ATG16L1,IL23R rs1004819, rs2201841,IGR2198a_1,IGR2096a_1 and CARD15 genotypes for disease risk influence.In almost all cases,the combined risk of susceptibility pairs was higher in patients carrying two different risk-associated gene variants together than individuals with just one polymorphism.The highest OR was found for IL23R rs2201841 homozygous genotype with combination of positive CARD15 status(P<0.001,OR=9.15,95% CI:2.05-40.74). CONCLUSION:The present study suggests a cumulative effect of individual IBD susceptibility loci.展开更多
Jujube witches’broom(JWB)caused by phytoplasma has a severely negative effect on multiple metabolisms in jujube.The GST gene family in plants participates in the regulation of a variety of biotic and abiotic stresses...Jujube witches’broom(JWB)caused by phytoplasma has a severely negative effect on multiple metabolisms in jujube.The GST gene family in plants participates in the regulation of a variety of biotic and abiotic stresses.This study aims to identify and reveal the changes in the jujube GST gene family in response to phytoplasma infection.Here,70 ZjGSTs were identified in the jujube genome and divided into 8 classes.Among them,the Tau-class,including 44 genes,was the largest.Phylogenetic analysis indicated that Tau-class genes were highly conserved among species,such as Arabidopsis,cotton,chickpea,and rice.Through chromosome location analysis,37.1%of genes were clustered,and 8 of 9 gene clusters were composed of Tau class members.Through RT-PCR,qRT-PCR and enzyme activity detection,the results showed that the expression of half(20/40)of the tested ZjGSTs was inhibited by phytoplasma infection in field and tissue culture conditions,and GST activity was also significantly reduced.In the resistant and susceptible varieties under phytoplasma infection,ZjGSTU49-ZjGSTU54 in the cluster IV showed opposite expression patterns,which may be due to functional divergence during evolution.Some upregulated genes(ZjGSTU45,ZjGSTU49,ZjGSTU59,and ZjGSTU70)might be involved in the process of jujube against JWB.The yeast two-hybrid results showed that all 6 Tauclass proteins tested could form homodimers or heterodimers.Overall,the comprehensive analysis of the jujube GST gene family revealed that ZjGSTs responded actively to phytoplasma infection.Furthermore,some screened genes(ZjGSTU24,ZjGSTU49-52,ZjGSTU70,and ZjDHAR10)will contribute to further functional studies of jujube-phytoplasma interactions.展开更多
BACKGROUND Adaptor protein,phosphotyrosine interacting with PH domain and leucine zipper 1(APPL1)plays a crucial role in regulating insulin signaling and glucose metabolism.Mutations in the APPL1 gene have been associ...BACKGROUND Adaptor protein,phosphotyrosine interacting with PH domain and leucine zipper 1(APPL1)plays a crucial role in regulating insulin signaling and glucose metabolism.Mutations in the APPL1 gene have been associated with the development of maturity-onset diabetes of the young type 14(MODY14).Currently,only two mutations[c.1655T>A(p.Leu552*)and c.281G>A p.(Asp94Asn)]have been identified in association with this disease.Given the limited understanding of MODY14,it is imperative to identify additional cases and carry out comprehensive research on MODY14 and APPL1 mutations.AIM To assess the pathogenicity of APPL1 gene mutations in diabetic patients and to characterize the functional role of the APPL1 domain.METHODS Patients exhibiting clinical signs and a medical history suggestive of MODY were screened for the study.Whole exome sequencing was performed on the patients as well as their family members.The pathogenicity of the identified APPL1 variants was predicted on the basis of bioinformatics analysis.In addition,the pathogenicity of the novel APPL1 variant was preliminarily evaluated through in vitro functional experiments.Finally,the impact of these variants on APPL1 protein expression and the insulin pathway were assessed,and the potential mechanism underlying the interaction between the APPL1 protein and the insulin receptor was further explored.RESULTS A total of five novel mutations were identified,including four missense mutations(Asp632Tyr,Arg633His,Arg532Gln,and Ile642Met)and one intronic mutation(1153-16A>T).Pathogenicity prediction analysis revealed that the Arg532Gln was pathogenic across all predictions.The Asp632Tyr and Arg633His variants also had pathogenicity based on MutationTaster.In addition,multiple alignment of amino acid sequences showed that the Arg532Gln,Asp632Tyr,and Arg633His variants were conserved across different species.Moreover,in in vitro functional experiments,both the c.1894G>T(at Asp632Tyr)and c.1595G>A(at Arg532Gln)mutations were found to downregulate the expression of APPL1 on both protein and mRNA levels,indicating their pathogenic nature.Therefore,based on the patient’s clinical and family history,combined with the results from bioinformatics analysis and functional experiment,the c.1894G>T(at Asp632Tyr)and c.1595G>A(at Arg532Gln)mutations were classified as pathogenic mutations.Importantly,all these mutations were located within the phosphotyrosinebinding domain of APPL1,which plays a critical role in the insulin sensitization effect.CONCLUSION This study provided new insights into the pathogenicity of APPL1 gene mutations in diabetes and revealed a potential target for the diagnosis and treatment of the disease.展开更多
A large number of chemokines,cytokines,other trophic factors and the extracellular matrix molecules form a favorable microenvironment for peripheral nerve regeneration.This microenvironment is one of the major factors...A large number of chemokines,cytokines,other trophic factors and the extracellular matrix molecules form a favorable microenvironment for peripheral nerve regeneration.This microenvironment is one of the major factors for regenerative success.Therefore,it is important to investigate the key molecules and regulators affecting nerve regeneration after peripheral nerve injury.However,the identities of specific cytokines at various time points after sciatic nerve injury have not been determined.The study was performed by transecting the sciatic nerve to establish a model of peripheral nerve injury and to analyze,by protein microarray,the expression of different cytokines in the distal nerve after injury.Results showed a large number of cytokines were up-regulated at different time points post injury and several cytokines,e.g.,ciliary neurotrophic factor,were downregulated.The construction of a protein-protein interaction network was used to screen how the proteins interacted with differentially expressed cytokines.Kyoto Encyclopedia of Genes and Genomes pathway and Gene ontology analyses indicated that the differentially expressed cytokines were significantly associated with chemokine signaling pathways,Janus kinase/signal transducers and activators of transcription,phosphoinositide 3-kinase/protein kinase B,and notch signaling pathway.The cytokines involved in inflammation,immune response and cell chemotaxis were up-regulated initially and the cytokines involved in neuronal apoptotic processes,cell-cell adhesion,and cell proliferation were up-regulated at 28 days after injury.Western blot analysis showed that the expression and changes of hepatocyte growth factor,glial cell line-derived neurotrophic factor and ciliary neurotrophic factor were consistent with the results of protein microarray analysis.The results provide a comprehensive understanding of changes in cytokine expression and changes in these cytokines and classical signaling pathways and biological functions during Wallerian degeneration,as well as a basis for potential treatments of peripheral nerve injury.The study was approved by the Institutional Animal Care and Use Committee of the Chinese PLA General Hospital,China(approval number:2016-x9-07)in September 2016.展开更多
Identification of disease-causing genes among a large number of candidates is a fundamental challenge in human disease studies.However,it is still time-consuming and laborious to determine the real disease-causing gen...Identification of disease-causing genes among a large number of candidates is a fundamental challenge in human disease studies.However,it is still time-consuming and laborious to determine the real disease-causing genes by biological experiments.With the advances of the high-throughput techniques,a large number of protein-protein interactions have been produced.Therefore,to address this issue,several methods based on protein interaction network have been proposed.In this paper,we propose a shortest path-based algorithm,named SPranker,to prioritize disease-causing genes in protein interaction networks.Considering the fact that diseases with similar phenotypes are generally caused by functionally related genes,we further propose an improved algorithm SPGOranker by integrating the semantic similarity of gene ontology(GO)annotations.SPGOranker not only considers the topological similarity between protein pairs in a protein interaction network but also takes their functional similarity into account.The proposed algorithms SPranker and SPGOranker were applied to 1598 known orphan disease-causing genes from 172 orphan diseases and compared with three state-of-the-art approaches,ICN,VS and RWR.The experimental results show that SPranker and SPGOranker outperform ICN,VS,and RWR for the prioritization of orphan disease-causing genes.Importantly,for the case study of severe combined immunodeficiency,SPranker and SPGOranker predict several novel causal genes.展开更多
Aim: To investigate the possible functions of human sperm membrane protein (hSMP-1) in the process of fertilization. Methods: A 576-bp cDNA fragment of HSD-1 gene coding for the extracellular domain of hSMP-1 was ...Aim: To investigate the possible functions of human sperm membrane protein (hSMP-1) in the process of fertilization. Methods: A 576-bp cDNA fragment of HSD-1 gene coding for the extracellular domain of hSMP-1 was cloned and expressed. The localization of this protein on human and mouse sperm was determined by indirect immunofluorescent staining by using anti-recombinant hSMP-1 (anti-rhSMP-1) antibodies. Sperm acrosome reaction and spermzona pellucida (ZP) binding assay were carried out in 10-week-old BALB/c mice. Results: Recombinant hSMP-1 was successfully cloned and expressed. The expression of the native protein was limited on the acrosome of human and mouse sperm. Treatment of anti-rhSMP-1 antibodies significantly decreased the average number of sperms bound to each egg. Meanwhile, the percentage of acrosome reaction was decreased in comparison to pre-immune control after treatment with anti-rhSMP-1 (P 〈 0.05). Conclusion: The results suggest that anti-rhSMP-1 antibody inhibited mouse acrosome reaction and sperm-ZP binding.展开更多
GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined ...GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interac-tion data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automati-cally selects the most appropriate functional classes as specific as possible during the learning proc-ess, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to “biology process” by three measures particularly designed for functional classes organ-ized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.展开更多
OBJECTIVE: To construct a protein-protein interaction(PPI) network in hypertension patients with blood-stasis syndrome(BSS) by using digital gene expression(DGE) sequencing and database mining techniques.METHOD...OBJECTIVE: To construct a protein-protein interaction(PPI) network in hypertension patients with blood-stasis syndrome(BSS) by using digital gene expression(DGE) sequencing and database mining techniques.METHODS: DGE analysis based on the Solexa Genome Analyzer platform was performed on vascular endothelial cells incubated with serum of hypertension patients with BSS. The differentially expressed genes were f iltered by comparing the expression levels between the different experimental groups. Then functional categories and e nriched pathways of the unique genes for BSS were analyzed using Database for Annotation, Visualization and Integrated Discovery(DAVID) to select those in the enrichment pathways. I nterologous Interaction Database(I2D) was used to construct PPI networks with the selected genes for hypertension patients with BSS. The potential candidate genes related to BSS were identif ied by comparing the number of relationships among genes. Confi rmed by quantitative reverse transcription-polymerase chain reaction(q RTPCR), gene ontology(GO) analysis was used to infer the functional annotations of the potential candidate genes for BSS.RESULTS: With gene enrichment analysis using DAVID, a list of 58 genes was chosen from the unique genes. The selected 58 genes were analyzed using I2 D, and a PPI network was constructed. Based on the network analysis results, candidate genes for BSS were identifi ed:DDIT3, JUN, HSPA8, NFIL3, HSPA5, HIST2H2 BE, H3F3 B, CEBPB, SAT1 and GADD45 A. Verif ied through qRT-PCR and analyzed by GO, the functional annotations of the potential candidate genes were explored.CONCLUSION: Compared with previous methodologies reported in the literature, the present DGE analysis and data mining method have shown a great improvement in analyzing BSS.展开更多
AIM: To identify the pathogenic genes in pterygium.METHODS: We obtained m RNA expression profiles from the Gene Expression Omnibus database(GEO) to identify differentially expressed genes(DEGs) between pterygium tissu...AIM: To identify the pathogenic genes in pterygium.METHODS: We obtained m RNA expression profiles from the Gene Expression Omnibus database(GEO) to identify differentially expressed genes(DEGs) between pterygium tissues and normal conjunctiva tissues. The Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway analysis, protein-protein interaction(PPI) network and transcription factors(TFs)-target gene regulatory network was performed to understand the function of DEGs. The expression of selected DEGs were validated by the quantitative real-time polymerase chain reaction(qRT-PCR).RESULTS: A total of 557 DEGs were identified between pterygium and normal individual. In PPI network, several genes were with high degrees such as FN1, KPNB1, DDB1, NF2 and BUB3. SSH1, PRSS23, LRP5L, MEOX1, RBM14, ABCA1, JOSD1, KRT6 A and UPK1B were the most downstream genes regulated by TFs. q RT-PCR results showed that FN1, PRSS23, ABCA1, KRT6A, ECT2 and SPARC were significantly up-regulated in pterygium and MEOX1 and MMP3 were also up-regulated with no significance, which was consistent with the our integrated analysis. CONCLUSION: The deregulated genes might be involved in the pathology of pterygium and could be used as treatment targets for pterygium.展开更多
AIM: To reveal the mechanisms of heat-shock transcription factor 4 (HSF4) mutation-induced cataract.METHODS: GSE22362, including 3 HSF4-null lens and 3 wild-type lens, was obtained from Gene Expression Omnibus dat...AIM: To reveal the mechanisms of heat-shock transcription factor 4 (HSF4) mutation-induced cataract.METHODS: GSE22362, including 3 HSF4-null lens and 3 wild-type lens, was obtained from Gene Expression Omnibus database. After data preprocessing, the differentially expressed genes (DEGs) were identified using the limma package. Based on Database for Annotation, Visualization and Integrated Discovery (DAVID) tool, functional and pathway enrichment analyses were performed for the DEGs. Followed by protein-protein interaction (PPI) network was constructed using STRING database and Cytoscape software. Furthermore, the validated microRNA (miRNA)-DEG pairs were obtained from miRWalk2.0 database, and then miRNA-DEG regulatory network was visualized by Cytoscape software. RESULTS: A total of 176 DEGs were identified in HSF4-null lens compared with wild-type lens. In the PPI network, FBJ osteosarcoma oncogene (FOS), early growth response 1 (EGR1) and heme oxygenase (decycling) 1 (HMOX1) had higher degrees and could interact with each other. Besides, mmu-miR-15a-5p and mmu-miR-26a-5p were among the top 10 miRNAs in the miRNA-DEG regulatory network. Additionally, mmu-miR-26a-5p could target EGR1 in the regulatory network. CONCLUSION: FOS, EGR1, HMOX1, mmu-miR-26a-5p and mmu-miR-15a-5p might function in the pathogenesis of HSF4 mutation-induced cataract.展开更多
Zebrafish and human genomes are highly homologous;however,despite this genomic similarity,adult zebrafish can achieve neuronal proliferation,regeneration and functional restoration within 6–8 weeks after spinal cord ...Zebrafish and human genomes are highly homologous;however,despite this genomic similarity,adult zebrafish can achieve neuronal proliferation,regeneration and functional restoration within 6–8 weeks after spinal cord injury,whereas humans cannot.To analyze differentially expressed zebrafish genes between axon-regenerated neurons and axon-non-regenerated neurons after spinal cord injury,and to explore the key genes and pathways of axonal regeneration after spinal cord injury,microarray GSE56842 was analyzed using the online tool,GEO2R,in the Gene Expression Omnibus database.Gene ontology and protein-protein interaction networks were used to analyze the identified differentially expressed genes.Finally,we screened for genes and pathways that may play a role in spinal cord injury repair in zebrafish and mammals.A total of 636 differentially expressed genes were obtained,including 255 up-regulated and 381 down-regulated differentially expressed genes in axon-regenerated neurons.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment results were also obtained.A protein-protein interaction network contained 480 node genes and 1976 node connections.We also obtained the 10 hub genes with the highest correlation and the two modules with the highest score.The results showed that spectrin may promote axonal regeneration after spinal cord injury in zebrafish.Transforming growth factor beta signaling may inhibit repair after spinal cord injury in zebrafish.Focal adhesion or tight junctions may play an important role in the migration and proliferation of some cells,such as Schwann cells or neural progenitor cells,after spinal cord injury in zebrafish.Bioinformatic analysis identified key candidate genes and pathways in axonal regeneration after spinal cord injury in zebrafish,providing targets for treatment of spinal cord injury in mammals.展开更多
Protein-protein interactions (PPIs) have been widely studied to understand the biological processes or molecular functions associated with different disease systems like cancer. While focused studies on individual c...Protein-protein interactions (PPIs) have been widely studied to understand the biological processes or molecular functions associated with different disease systems like cancer. While focused studies on individual cancers have generated valuable information, global and comparative analysis of datasets from different cancer types has not been done. In this work, we carried out bioinformatic analysis of PPIs corresponding to differentially expressed genes from microarrays of various tumor tissues (belonging to bladder, colon, kidney and thyroid cancers) and compared their associated biological processes and molecular functions (based on Gene Ontology terms). We identified a set of processes or functions that are common to all these cancers, as well as those that are specific to only one or partial cancer types. Similarly, protein interaction networks in nucleic acid metabolism were compared to identify the common/specific clusters of proteins across different cancer types. Our results provide a basis for further experimental investigations to study protein interaction networks associated with cancer. The methodology developed in this work can also be applied to study similar disease systems.展开更多
AIM:To investigate the effect of retinoblastoma protein-interacting zinc finger gene 1(RIZ1)upregulation in gene expression profile and oncogenicity of human esophageal squamous cell carcinoma(ESCC)cell line TE13.METH...AIM:To investigate the effect of retinoblastoma protein-interacting zinc finger gene 1(RIZ1)upregulation in gene expression profile and oncogenicity of human esophageal squamous cell carcinoma(ESCC)cell line TE13.METHODS:TE13 cells were transfected with pcDNA3.1(+)/RIZ1 and pcDNA3.1(+).Changes in gene expression profile were screened and the microarray results were confirmed by reverse transcriptionpolymerase chain reaction(RT-PCR).Nude mice were inoculated with TE13 cells to establish ESCC xenografts.After two weeks,the inoculated mice were randomly divided into three groups.Tumors were injected with normal saline,transfection reagent pcDNA3.1(+)and transfection reagent pcDNA3.1(+)/RIZ1,respectively.Tumor development was quantified,and changes in gene expression of RIZ1 transfected tumors were detected by RT-PCR and Western blotting.RESULTS:DNA microarray data showed that RIZ1transfection induced widespread changes in gene expression profile of cell line TE13,with 960 genes upregulated and 1163 downregulated.Treatment of tumor xenografts with RIZ1 recombinant plasmid significantly inhibited tumor growth,decreased tumor size,and increased expression of RIZ1 mRNA compared to control groups.The changes in gene expression profile were also observed in vivo after RIZ1 transfection.Most of the differentially expressed genes were associated with cell development,supervision of viral replication,lymphocyte costimulatory and immune system development in esophageal cells.RIZ1 gene may be involved in multiple cancer pathways,such as cytokine receptor interaction and transforming growth factor beta signaling.CONCLUSION:The development and progression of esophageal cancer are related to the inactivation of RIZ1.Virus infection may also be an important factor.展开更多
基金supported by the National Natural Science Foundation of China,Nos.91849115 and U1904207(to YX),81974211 and 82171247(to CS)Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences,No.2020-PT310-01(to YX).
文摘The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.
基金the National Natural Science Foundation of China,No.81360595 and No.81860790Guangxi Natural Science Foundation Program,No.KJT13066+2 种基金the Bagui Scholars Foundation Program of Guangxithe Special-term Experts Foundation Program of Guangxithe Project of Guangxi Young Teacher Fundamental Ability Promotion,No.2017KY0298
文摘BACKGROUND Studies show that the antifibrotic mechanism of taurine may involve its inhibition of the activation and proliferation of hepatic stellate cells(HSCs). Since the molecular mechanism of taurine-mediated antifibrotic activity has not been fully unveiled and is little studied, it is imperative to use "omics" methods to systematically investigate the molecular mechanism by which taurine inhibits liver fibrosis.AIM To establish a network including transcriptomic and protein-protein interaction data to elucidate the molecular mechanism of taurine-induced HSC apoptosis.METHODS We used microarrays, bioinformatics, protein-protein interaction(PPI) network,and sub-modules to investigate taurine-induced changes in gene expression in human HSCs(LX-2). Subsequently, all of the differentially expressed genes(DEGs) were subjected to gene ontology function and Kyoto encyclopedia of genes and genomes pathway enrichment analysis. Furthermore, the interactions of DEGs were explored in a human PPI network, and sub-modules of the DEGs interaction network were analyzed using Cytoscape software.RESULTS A total of 635 DEGs were identified in taurine-treated HSCs when compared with the controls. Of these, 304 genes were statistically significantly up-regulated, and 331 down-regulated. Most of these DEGs were mainly located on the membrane and extracellular region, and are involved in the biological processes of signal transduction, cell proliferation, positive regulation of extracellular regulated protein kinases 1(ERK1) and ERK2 cascade, extrinsic apoptotic signaling pathway and so on. Fifteen significantly enriched pathways with DEGs were identified, including mitogen-activated protein kinase(MAPK) signaling pathway, peroxisome proliferators-activated receptor signaling pathway,estrogen signaling pathway, Th1 and Th2 cell differentiation, cyclic adenosine monophosphate signaling pathway and so on. By integrating the transcriptomics and human PPI data, nine critical genes, including MMP2, MMP9, MMP21,TIMP3, KLF10, CX3CR1, TGFB1, VEGFB, and EGF, were identified in the PPI network analysis.CONCLUSION Taurine promotes the apoptosis of HSCs via up-regulating TGFB1 and then activating the p38 MAPK-JNK-Caspase9/8/3 pathway. These findings enhance the understanding of the molecular mechanism of taurine-induced HSC apoptosis and provide references for liver disorder therapy.
文摘It is generally assumed that behavior results from an interaction between susceptible genes and environmental stimuli during critical life stages.The present article reviews the main theoretical and practical concepts in the research of gene environment interaction,emphasizing the need for models simulating real life complexity.We review a novel approach to study gene environment interaction in which a brief post-natal interference with the expression of multiple genes,by hindering the activity of the ubiquitous transcription factor specificity protein 1(Sp1) is followed by later-in-life exposure of rats to stress.Finally,this review discusses the role of peripheral processes in behavioral responses,with the Sp1 model as one example demonstrating how specific behavioral patterns are linked to modulations in both peripheral and central physiological processes.We suggest that models,which take into account the tripartite reciprocal interaction between the central nervous system,peripheral systems and environmental stimuli will advance our understanding of the complexity of behavior.
基金Supported by Grant of Hungarian Scientific Research Foundation,No.OTKA T 73430
文摘AIM:To investigate the interaction of interleukin-23 receptor(IL23R)(rs1004819 and rs2201841),autophagy-related 16-like 1(ATG16L1)(rs2241880), caspase recruitment domain-containing protein 15 (CARD15)genes,and IBD5 locus in Crohn's disease(CD) patients. METHODS:A total of 315 unrelated subjects with CD and 314 healthy controls were genotyped.Interactions and specific genotype combinations of a total of eight variants were tested.The variants of IBD5locus(IGR2198a_1 rs11739135 and IGR2096a_1 rs12521868),CARD15(R702W rs2066845 and L1007fs rs2066847),ATG16L1(rs2241880)and IL23R (rs1004819,rs2201841)genes were genotyped by PCR-RFLP,the G908R(rs2066844)in CARD15 was determined by direct sequencing. RESULTS:The association of ATG16L1 T300A with CD was confirmed[P=0.004,odds ratio(OR)=1.69, 95%CI:1.19-2.41],and both IL23R variants were found to represent significant risk for the disease(P= 0.008,OR=2.05,95%CI:1.20-3.50 for rs1004819 AA;P<0.001,OR=2.97,95%CI:1.65-5.33 for rs2201841 CC).Logistic regression analysis of pairwise interaction of the inflammatory bowel disease (IBD)loci indicated that IL23R,ATG16L1,CARD15 and IBD5(IGR2198a_1)contribute independently to disease risk.We also analysed the specific combina- tions by pair of individual ATG16L1,IL23R rs1004819, rs2201841,IGR2198a_1,IGR2096a_1 and CARD15 genotypes for disease risk influence.In almost all cases,the combined risk of susceptibility pairs was higher in patients carrying two different risk-associated gene variants together than individuals with just one polymorphism.The highest OR was found for IL23R rs2201841 homozygous genotype with combination of positive CARD15 status(P<0.001,OR=9.15,95% CI:2.05-40.74). CONCLUSION:The present study suggests a cumulative effect of individual IBD susceptibility loci.
基金supported by grants from the National Key R&D Program Project Funding(Grant No.2018YFD1000607)the Foundation for 100 Innovative Talents of Hebei Province(Grant No.SLRC2019031)+1 种基金the National Natural Science Foundation of China(Grant No.31772285)the Hebei Province Innovation Foundation for Postgraduates(Grant No.CXZZBS2020097)。
文摘Jujube witches’broom(JWB)caused by phytoplasma has a severely negative effect on multiple metabolisms in jujube.The GST gene family in plants participates in the regulation of a variety of biotic and abiotic stresses.This study aims to identify and reveal the changes in the jujube GST gene family in response to phytoplasma infection.Here,70 ZjGSTs were identified in the jujube genome and divided into 8 classes.Among them,the Tau-class,including 44 genes,was the largest.Phylogenetic analysis indicated that Tau-class genes were highly conserved among species,such as Arabidopsis,cotton,chickpea,and rice.Through chromosome location analysis,37.1%of genes were clustered,and 8 of 9 gene clusters were composed of Tau class members.Through RT-PCR,qRT-PCR and enzyme activity detection,the results showed that the expression of half(20/40)of the tested ZjGSTs was inhibited by phytoplasma infection in field and tissue culture conditions,and GST activity was also significantly reduced.In the resistant and susceptible varieties under phytoplasma infection,ZjGSTU49-ZjGSTU54 in the cluster IV showed opposite expression patterns,which may be due to functional divergence during evolution.Some upregulated genes(ZjGSTU45,ZjGSTU49,ZjGSTU59,and ZjGSTU70)might be involved in the process of jujube against JWB.The yeast two-hybrid results showed that all 6 Tauclass proteins tested could form homodimers or heterodimers.Overall,the comprehensive analysis of the jujube GST gene family revealed that ZjGSTs responded actively to phytoplasma infection.Furthermore,some screened genes(ZjGSTU24,ZjGSTU49-52,ZjGSTU70,and ZjDHAR10)will contribute to further functional studies of jujube-phytoplasma interactions.
基金Supported by the National Natural Science Foundation,No.81974124and Taishan Scholar Project,No.tsqn20161071.
文摘BACKGROUND Adaptor protein,phosphotyrosine interacting with PH domain and leucine zipper 1(APPL1)plays a crucial role in regulating insulin signaling and glucose metabolism.Mutations in the APPL1 gene have been associated with the development of maturity-onset diabetes of the young type 14(MODY14).Currently,only two mutations[c.1655T>A(p.Leu552*)and c.281G>A p.(Asp94Asn)]have been identified in association with this disease.Given the limited understanding of MODY14,it is imperative to identify additional cases and carry out comprehensive research on MODY14 and APPL1 mutations.AIM To assess the pathogenicity of APPL1 gene mutations in diabetic patients and to characterize the functional role of the APPL1 domain.METHODS Patients exhibiting clinical signs and a medical history suggestive of MODY were screened for the study.Whole exome sequencing was performed on the patients as well as their family members.The pathogenicity of the identified APPL1 variants was predicted on the basis of bioinformatics analysis.In addition,the pathogenicity of the novel APPL1 variant was preliminarily evaluated through in vitro functional experiments.Finally,the impact of these variants on APPL1 protein expression and the insulin pathway were assessed,and the potential mechanism underlying the interaction between the APPL1 protein and the insulin receptor was further explored.RESULTS A total of five novel mutations were identified,including four missense mutations(Asp632Tyr,Arg633His,Arg532Gln,and Ile642Met)and one intronic mutation(1153-16A>T).Pathogenicity prediction analysis revealed that the Arg532Gln was pathogenic across all predictions.The Asp632Tyr and Arg633His variants also had pathogenicity based on MutationTaster.In addition,multiple alignment of amino acid sequences showed that the Arg532Gln,Asp632Tyr,and Arg633His variants were conserved across different species.Moreover,in in vitro functional experiments,both the c.1894G>T(at Asp632Tyr)and c.1595G>A(at Arg532Gln)mutations were found to downregulate the expression of APPL1 on both protein and mRNA levels,indicating their pathogenic nature.Therefore,based on the patient’s clinical and family history,combined with the results from bioinformatics analysis and functional experiment,the c.1894G>T(at Asp632Tyr)and c.1595G>A(at Arg532Gln)mutations were classified as pathogenic mutations.Importantly,all these mutations were located within the phosphotyrosinebinding domain of APPL1,which plays a critical role in the insulin sensitization effect.CONCLUSION This study provided new insights into the pathogenicity of APPL1 gene mutations in diabetes and revealed a potential target for the diagnosis and treatment of the disease.
基金supported by the National Key Research&Development Program of China,No.2017YFA0104702(to AJS)the National Basic Research Program of China(973 Program),No.2014CB542201(to JP)
文摘A large number of chemokines,cytokines,other trophic factors and the extracellular matrix molecules form a favorable microenvironment for peripheral nerve regeneration.This microenvironment is one of the major factors for regenerative success.Therefore,it is important to investigate the key molecules and regulators affecting nerve regeneration after peripheral nerve injury.However,the identities of specific cytokines at various time points after sciatic nerve injury have not been determined.The study was performed by transecting the sciatic nerve to establish a model of peripheral nerve injury and to analyze,by protein microarray,the expression of different cytokines in the distal nerve after injury.Results showed a large number of cytokines were up-regulated at different time points post injury and several cytokines,e.g.,ciliary neurotrophic factor,were downregulated.The construction of a protein-protein interaction network was used to screen how the proteins interacted with differentially expressed cytokines.Kyoto Encyclopedia of Genes and Genomes pathway and Gene ontology analyses indicated that the differentially expressed cytokines were significantly associated with chemokine signaling pathways,Janus kinase/signal transducers and activators of transcription,phosphoinositide 3-kinase/protein kinase B,and notch signaling pathway.The cytokines involved in inflammation,immune response and cell chemotaxis were up-regulated initially and the cytokines involved in neuronal apoptotic processes,cell-cell adhesion,and cell proliferation were up-regulated at 28 days after injury.Western blot analysis showed that the expression and changes of hepatocyte growth factor,glial cell line-derived neurotrophic factor and ciliary neurotrophic factor were consistent with the results of protein microarray analysis.The results provide a comprehensive understanding of changes in cytokine expression and changes in these cytokines and classical signaling pathways and biological functions during Wallerian degeneration,as well as a basis for potential treatments of peripheral nerve injury.The study was approved by the Institutional Animal Care and Use Committee of the Chinese PLA General Hospital,China(approval number:2016-x9-07)in September 2016.
基金supported in part by the National Natural Science Foundation of China(61370024,61428209,61232001)Program for New Century Excellent Talents in University(NCET-12-0547)
文摘Identification of disease-causing genes among a large number of candidates is a fundamental challenge in human disease studies.However,it is still time-consuming and laborious to determine the real disease-causing genes by biological experiments.With the advances of the high-throughput techniques,a large number of protein-protein interactions have been produced.Therefore,to address this issue,several methods based on protein interaction network have been proposed.In this paper,we propose a shortest path-based algorithm,named SPranker,to prioritize disease-causing genes in protein interaction networks.Considering the fact that diseases with similar phenotypes are generally caused by functionally related genes,we further propose an improved algorithm SPGOranker by integrating the semantic similarity of gene ontology(GO)annotations.SPGOranker not only considers the topological similarity between protein pairs in a protein interaction network but also takes their functional similarity into account.The proposed algorithms SPranker and SPGOranker were applied to 1598 known orphan disease-causing genes from 172 orphan diseases and compared with three state-of-the-art approaches,ICN,VS and RWR.The experimental results show that SPranker and SPGOranker outperform ICN,VS,and RWR for the prioritization of orphan disease-causing genes.Importantly,for the case study of severe combined immunodeficiency,SPranker and SPGOranker predict several novel causal genes.
文摘Aim: To investigate the possible functions of human sperm membrane protein (hSMP-1) in the process of fertilization. Methods: A 576-bp cDNA fragment of HSD-1 gene coding for the extracellular domain of hSMP-1 was cloned and expressed. The localization of this protein on human and mouse sperm was determined by indirect immunofluorescent staining by using anti-recombinant hSMP-1 (anti-rhSMP-1) antibodies. Sperm acrosome reaction and spermzona pellucida (ZP) binding assay were carried out in 10-week-old BALB/c mice. Results: Recombinant hSMP-1 was successfully cloned and expressed. The expression of the native protein was limited on the acrosome of human and mouse sperm. Treatment of anti-rhSMP-1 antibodies significantly decreased the average number of sperms bound to each egg. Meanwhile, the percentage of acrosome reaction was decreased in comparison to pre-immune control after treatment with anti-rhSMP-1 (P 〈 0.05). Conclusion: The results suggest that anti-rhSMP-1 antibody inhibited mouse acrosome reaction and sperm-ZP binding.
基金the National Natural Science Foundation of China (Grant Nos. 30170515, 30370388, 30370798, 30570424 and 30571034),the National High Tech Development Project of China (Grant Nos. 2003AA2Z2051 and 2002AA2Z2052),+3 种基金Heilongjiang Science & Technology Key Project (Grant No. GB03C602-4),Harbin (City) Science & Technology Key Project (Grant No. 2003AA3CS113),Natural Science Foundation of Heilongjiang (Grant No. F0177 ),Outstanding Overseas Scientist Foundation of Education Department of Heilongjiang Province (Grant No. 1055HG009)
文摘GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interac-tion data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automati-cally selects the most appropriate functional classes as specific as possible during the learning proc-ess, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to “biology process” by three measures particularly designed for functional classes organ-ized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.
基金supported by the National Natural Science Foundation of China (No. 81173157)the Guangdong Natural Science Foundation (No. 10151063201000045)
文摘OBJECTIVE: To construct a protein-protein interaction(PPI) network in hypertension patients with blood-stasis syndrome(BSS) by using digital gene expression(DGE) sequencing and database mining techniques.METHODS: DGE analysis based on the Solexa Genome Analyzer platform was performed on vascular endothelial cells incubated with serum of hypertension patients with BSS. The differentially expressed genes were f iltered by comparing the expression levels between the different experimental groups. Then functional categories and e nriched pathways of the unique genes for BSS were analyzed using Database for Annotation, Visualization and Integrated Discovery(DAVID) to select those in the enrichment pathways. I nterologous Interaction Database(I2D) was used to construct PPI networks with the selected genes for hypertension patients with BSS. The potential candidate genes related to BSS were identif ied by comparing the number of relationships among genes. Confi rmed by quantitative reverse transcription-polymerase chain reaction(q RTPCR), gene ontology(GO) analysis was used to infer the functional annotations of the potential candidate genes for BSS.RESULTS: With gene enrichment analysis using DAVID, a list of 58 genes was chosen from the unique genes. The selected 58 genes were analyzed using I2 D, and a PPI network was constructed. Based on the network analysis results, candidate genes for BSS were identifi ed:DDIT3, JUN, HSPA8, NFIL3, HSPA5, HIST2H2 BE, H3F3 B, CEBPB, SAT1 and GADD45 A. Verif ied through qRT-PCR and analyzed by GO, the functional annotations of the potential candidate genes were explored.CONCLUSION: Compared with previous methodologies reported in the literature, the present DGE analysis and data mining method have shown a great improvement in analyzing BSS.
基金Supported by Science and Technology Development Fund of Bengbu Medical College(No.BYFY1785)
文摘AIM: To identify the pathogenic genes in pterygium.METHODS: We obtained m RNA expression profiles from the Gene Expression Omnibus database(GEO) to identify differentially expressed genes(DEGs) between pterygium tissues and normal conjunctiva tissues. The Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway analysis, protein-protein interaction(PPI) network and transcription factors(TFs)-target gene regulatory network was performed to understand the function of DEGs. The expression of selected DEGs were validated by the quantitative real-time polymerase chain reaction(qRT-PCR).RESULTS: A total of 557 DEGs were identified between pterygium and normal individual. In PPI network, several genes were with high degrees such as FN1, KPNB1, DDB1, NF2 and BUB3. SSH1, PRSS23, LRP5L, MEOX1, RBM14, ABCA1, JOSD1, KRT6 A and UPK1B were the most downstream genes regulated by TFs. q RT-PCR results showed that FN1, PRSS23, ABCA1, KRT6A, ECT2 and SPARC were significantly up-regulated in pterygium and MEOX1 and MMP3 were also up-regulated with no significance, which was consistent with the our integrated analysis. CONCLUSION: The deregulated genes might be involved in the pathology of pterygium and could be used as treatment targets for pterygium.
基金Supported by the Scientific and Technological Developing Scheme of Jilin Province(No.20150414038GH)
文摘AIM: To reveal the mechanisms of heat-shock transcription factor 4 (HSF4) mutation-induced cataract.METHODS: GSE22362, including 3 HSF4-null lens and 3 wild-type lens, was obtained from Gene Expression Omnibus database. After data preprocessing, the differentially expressed genes (DEGs) were identified using the limma package. Based on Database for Annotation, Visualization and Integrated Discovery (DAVID) tool, functional and pathway enrichment analyses were performed for the DEGs. Followed by protein-protein interaction (PPI) network was constructed using STRING database and Cytoscape software. Furthermore, the validated microRNA (miRNA)-DEG pairs were obtained from miRWalk2.0 database, and then miRNA-DEG regulatory network was visualized by Cytoscape software. RESULTS: A total of 176 DEGs were identified in HSF4-null lens compared with wild-type lens. In the PPI network, FBJ osteosarcoma oncogene (FOS), early growth response 1 (EGR1) and heme oxygenase (decycling) 1 (HMOX1) had higher degrees and could interact with each other. Besides, mmu-miR-15a-5p and mmu-miR-26a-5p were among the top 10 miRNAs in the miRNA-DEG regulatory network. Additionally, mmu-miR-26a-5p could target EGR1 in the regulatory network. CONCLUSION: FOS, EGR1, HMOX1, mmu-miR-26a-5p and mmu-miR-15a-5p might function in the pathogenesis of HSF4 mutation-induced cataract.
基金supported by the State Key Program of National Natural Science Foundation of China,No.81330042(to SQF)the International Cooperation Program of the National Natural Science Foundation of China,No.81620108018(to SQF)
文摘Zebrafish and human genomes are highly homologous;however,despite this genomic similarity,adult zebrafish can achieve neuronal proliferation,regeneration and functional restoration within 6–8 weeks after spinal cord injury,whereas humans cannot.To analyze differentially expressed zebrafish genes between axon-regenerated neurons and axon-non-regenerated neurons after spinal cord injury,and to explore the key genes and pathways of axonal regeneration after spinal cord injury,microarray GSE56842 was analyzed using the online tool,GEO2R,in the Gene Expression Omnibus database.Gene ontology and protein-protein interaction networks were used to analyze the identified differentially expressed genes.Finally,we screened for genes and pathways that may play a role in spinal cord injury repair in zebrafish and mammals.A total of 636 differentially expressed genes were obtained,including 255 up-regulated and 381 down-regulated differentially expressed genes in axon-regenerated neurons.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment results were also obtained.A protein-protein interaction network contained 480 node genes and 1976 node connections.We also obtained the 10 hub genes with the highest correlation and the two modules with the highest score.The results showed that spectrin may promote axonal regeneration after spinal cord injury in zebrafish.Transforming growth factor beta signaling may inhibit repair after spinal cord injury in zebrafish.Focal adhesion or tight junctions may play an important role in the migration and proliferation of some cells,such as Schwann cells or neural progenitor cells,after spinal cord injury in zebrafish.Bioinformatic analysis identified key candidate genes and pathways in axonal regeneration after spinal cord injury in zebrafish,providing targets for treatment of spinal cord injury in mammals.
基金supported by the start-up funds to CG from SUNY-Albanypartly by the Academic Research Enhancement Award(1R15GM080681-01) to CG from NIGMS/NIH
文摘Protein-protein interactions (PPIs) have been widely studied to understand the biological processes or molecular functions associated with different disease systems like cancer. While focused studies on individual cancers have generated valuable information, global and comparative analysis of datasets from different cancer types has not been done. In this work, we carried out bioinformatic analysis of PPIs corresponding to differentially expressed genes from microarrays of various tumor tissues (belonging to bladder, colon, kidney and thyroid cancers) and compared their associated biological processes and molecular functions (based on Gene Ontology terms). We identified a set of processes or functions that are common to all these cancers, as well as those that are specific to only one or partial cancer types. Similarly, protein interaction networks in nucleic acid metabolism were compared to identify the common/specific clusters of proteins across different cancer types. Our results provide a basis for further experimental investigations to study protein interaction networks associated with cancer. The methodology developed in this work can also be applied to study similar disease systems.
基金Supported by The National Natural Science Foundation of China,No.81201945Science Foundation of Tianjin Medical University,No.2011KY08+1 种基金Doctoral Program of Higher Education Research Fund,No.20091202110009Natural Science Foundation of Tianjin,China,No.10JCYBJC11300
文摘AIM:To investigate the effect of retinoblastoma protein-interacting zinc finger gene 1(RIZ1)upregulation in gene expression profile and oncogenicity of human esophageal squamous cell carcinoma(ESCC)cell line TE13.METHODS:TE13 cells were transfected with pcDNA3.1(+)/RIZ1 and pcDNA3.1(+).Changes in gene expression profile were screened and the microarray results were confirmed by reverse transcriptionpolymerase chain reaction(RT-PCR).Nude mice were inoculated with TE13 cells to establish ESCC xenografts.After two weeks,the inoculated mice were randomly divided into three groups.Tumors were injected with normal saline,transfection reagent pcDNA3.1(+)and transfection reagent pcDNA3.1(+)/RIZ1,respectively.Tumor development was quantified,and changes in gene expression of RIZ1 transfected tumors were detected by RT-PCR and Western blotting.RESULTS:DNA microarray data showed that RIZ1transfection induced widespread changes in gene expression profile of cell line TE13,with 960 genes upregulated and 1163 downregulated.Treatment of tumor xenografts with RIZ1 recombinant plasmid significantly inhibited tumor growth,decreased tumor size,and increased expression of RIZ1 mRNA compared to control groups.The changes in gene expression profile were also observed in vivo after RIZ1 transfection.Most of the differentially expressed genes were associated with cell development,supervision of viral replication,lymphocyte costimulatory and immune system development in esophageal cells.RIZ1 gene may be involved in multiple cancer pathways,such as cytokine receptor interaction and transforming growth factor beta signaling.CONCLUSION:The development and progression of esophageal cancer are related to the inactivation of RIZ1.Virus infection may also be an important factor.