期刊文献+
共找到146篇文章
< 1 2 8 >
每页显示 20 50 100
Long Non-coding RNA ANRIL in Gene Regulation and Its Duality in Atherosclerosis 被引量:3
1
作者 池洁珊 李鉴洲 +3 位作者 贾静静 张婷 刘小马 易黎 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第6期816-822,共7页
The antisense transcript long non-coding RNA(lnc RNA)(antisense non-coding RNA in the INK4 locus, ANRIL) is an antisense of the cyclin-dependent kinase inhibitor 2 B(CDKN2B) gene on chromosome 9 p21 that contain... The antisense transcript long non-coding RNA(lnc RNA)(antisense non-coding RNA in the INK4 locus, ANRIL) is an antisense of the cyclin-dependent kinase inhibitor 2 B(CDKN2B) gene on chromosome 9 p21 that contains an overlapping 299-bp region and shares a bidirectional promoter with alternate open reading frame(ARF). In the context of gene regulation, ANRIL is responsible for directly recruiting polycomb group(Pc G) proteins, including polycomb repressive complex-1(PRC-1) and polycomb repressive complex-2(PRC-2), to modify the epigenetic chromatin state and subsequently inhibit gene expression in cis-regulation. On the other hand, previous reports have indicated that ANRIL is capable of binding to a specific site or sequence, including the Alu element, E2 F transcription factor 1(E2F1), and CCCTC-binding factor(CTCF), to achieve trans-regulation functions. In addition to its function in cell proliferation, adhesion and apoptosis, ANRIL is very closely associated with atherosclerosis-related diseases. The different transcripts and the SNPs that are related to atherosclerotic vascular diseases(ASVD-SNPs) are inextricably linked to the development and progression of atherosclerosis. Linear transcripts have been shown to be a risk factor for atherosclerosis, whereas circular transcripts are protective against atherosclerosis. Furthermore, ANRIL also acts as a component of the inflammatory pathway involved in the regulation of inflammation, which is considered to be one of the causes of atherosclerosis. Collectively, ANRIL plays an important role in the formation of atherosclerosis, and the artificial modification of ANRIL transcripts should be considered following the development of this disease. 展开更多
关键词 ANRIL atherosclerosis gene regulation duality
下载PDF
Use of Rich BHI Medium Instead of Synthetic TMH Medium for Gene Regulation Study in Yersinia pestis
2
作者 ZHANG Yi Quan MA Li Zhi +6 位作者 WANG Li GAO He TAN Ya Fang GUO Zhao Biao QIU Jing Fu YANG Rui Fu ZHOU Dong Sheng 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2012年第6期639-644,共6页
Objective This study is to verify the use of rich BHI medium to substitute synthetic media for gene regulation studies in Yersinia pestis. Methods The transcriptional regulation of rovA by PhoP or via temperature upsh... Objective This study is to verify the use of rich BHI medium to substitute synthetic media for gene regulation studies in Yersinia pestis. Methods The transcriptional regulation of rovA by PhoP or via temperature upshift, and that of pla by CRP were investigated when Y. pestis was cultured in BHI. After cultivation under 26 ~C, and with temperature shifting from 26 to 37 ~C, the wild-type (WT) strain or its phoP or crp null mutant (AphoP or Acrp, respectively) was subject to RNA isolation, and then the promoter activity of rovA or plo in the above strains was detected by the primer extension assay. The rovA promoter-proximal region was cloned into the pRW50 containing a promoterless lacZ gene. The recombinant LacZ reporter plasmid was transformed into WT and AphoP to measure the promoter activity of rovA in these two strains with the ^-Galactosidase enzyme assay system. Results When Y. pestis was cultured in BHI, the transcription of rovA was inhibited by PhoP and upon temperature upshift while that ofpla was stimulated by CRP. Conclusion The rich BHI medium without the need for modification to be introduced into the relevant stimulating conditions (which are essential to triggering relevant gene regulatory cascades), can be used in lieu of synthetic TMH media to cultivate Y. pestis for gene regulation studies. 展开更多
关键词 Yersinia pestis BHI TMH gene regulation
下载PDF
Direct somatic embryogenesis and related gene expression networks in leaf explants of Hippeastrum ‘Bangkok Rose’
3
作者 Jingjue Zeng Yi Deng +8 位作者 Shahid Iqbal Jiarui Zhang Kunlin Wu Guohua Ma Lin Li Guangyi Dai Rufang Deng Lin Fang Songjun Zeng 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期556-572,共17页
Hippeastrum, a highly diverse genus in the Amaryllidaceae family, is a valuable ornamental bulbous flowering plant. Somatic embryogenesis(SE) is an efficient method for mass production of Hippeastrum plantlets. Previo... Hippeastrum, a highly diverse genus in the Amaryllidaceae family, is a valuable ornamental bulbous flowering plant. Somatic embryogenesis(SE) is an efficient method for mass production of Hippeastrum plantlets. Previous studies have been devoted to the in vitro propagation of Hippeastrum, but the SE and its regulatory networks are rarely reported. In this study, we established a direct SE method of Hippeastrum Bangkok Rose' using leaf bases as explants. MS supplemented with 1.00 mg·L^(-1)NAA +1.00 mg·L^(-1)KT + 0.25 mg·L^(-1)TDZ was the optimal medium for SE. Histological observations showed that the bipolar somatic embryo originated from the epidermal cell layer and underwent initiation,globular, scutellar and coleoptile stages. During SE, endogenous hormones of IAA, CTK, ABA, and SA were highly accumulated. Transcriptomic analysis revealed the genes encoding auxin biosynthesis/metabolic enzymes and efflux carriers were induced, while the auxin receptor of TIR1 and ARF transcriptional repressor of Aux/IAA were down-regulated and up-regulated, respectively, leading to suppression of auxin signaling. In contrast, cytokine signaling was promoted at the early stage of SE, as biosynthesis, transport, and signaling components were up-regulated.Various stress-related genes were up-regulated at the early or late stages of SE. Chromatin remodeling could also be dynamically regulated via distinct expression enzymes that control histone methylation and acetylation during SE. Moreover, key SE regulators, including WOXs and SERKs were highly expressed along with SE. Overall, the present study provides insights into the SE regulatory mechanisms of the Hippeastrum. 展开更多
关键词 Hippeastrum Tissue culture Somatic embryogenesis gene regulation
下载PDF
Role of long non-coding RNAs in gene regulation and oncogenesis 被引量:17
4
作者 PAN Yan-feng FENG Lei ZHANG Xian-qiang SONG Li-jie LIANG Hong-xia LI Zhi-qin TAO Feng-bao 《Chinese Medical Journal》 SCIE CAS CSCD 2011年第15期2378-2383,共6页
Objective This article aims to review recent studies on the biological characteristics of long non-coding RNAs (IncRNAs), transcription regulation by IncRNAs, and the results of recent studies on the mechanism of ac... Objective This article aims to review recent studies on the biological characteristics of long non-coding RNAs (IncRNAs), transcription regulation by IncRNAs, and the results of recent studies on the mechanism of action of IncRNAs in tumor development. Data sources The data cited in this review were mainly obtained from the articles listed in PubMed and HighWire that were published from January 2002 to June 2010. The search terms were "long non-coding RNA", "gene regulation", and "tumor". Study selection The mechanism of IncRNAs in gene expression regulation, and tumors concerned with IncRNAs and the role of IncRNAs in oncogenesis. Results IncRNAs play an important role in transcription control, and post-transcriptional controlling. IncRNAs are suppressing and promoting factors. regulation by controlling chromatin remodeling, transcriptional involved in many kinds of tumors and play key roles as both Conclusion IncRNAs could perfectly regulate the balance of gene expression system and play important roles in oncogenic cellular transformation. 展开更多
关键词 long non-coding RNA gene regulation CANCER
原文传递
SWR1 Chromatin-Remodeling Complex Subunits and H2A.Z Have Non-overlapping Functions in Immunity and Gene Regulation in Arabidopsis 被引量:7
5
作者 Souha Berriri Sreeramaiah N +1 位作者 Gangappa and S Vinod Kumar 《Molecular Plant》 SCIE CAS CSCD 2016年第7期1051-1065,共15页
Incorporation of the histone variant H2A.Z into nucleosomes by the SWR1 chromatin remodeling complex is a critical step in eukaryotic gene regulation. In Arabidopsis, SWRlc and H2A.Z have been shown to con- trol gene ... Incorporation of the histone variant H2A.Z into nucleosomes by the SWR1 chromatin remodeling complex is a critical step in eukaryotic gene regulation. In Arabidopsis, SWRlc and H2A.Z have been shown to con- trol gene expression underlying development and environmental responses. Although they have been implicated in defense, the specific roles of the complex subunits and H2A.Z in immunity are not well under- stood. In this study, we analyzed the roles of the SWRlc subunits, PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1), ACTIN-RELATED PROTEIN6 (ARP6), and SWR1 COMPLEX 6 (SWC6), as well as H2A.Z, in defense and gene regulation. We found that SWRlc components play different roles in resistance to different pathogens. Loss of PIE1 and SWC6 function as well as depletion of H2A.Z led to reduced basal resistance, while loss of ARP6 fucntion resulted in enhanced resistance. We found that mutations in PIE1 and SWC6 resulted in impaired effector-triggered immunity. Mutation in SWRlc components and H2A.Z also resulted in compromised jasmonic acid/ethylene-mediated immunity. Genome-wide expres- sion analyses similarly reveal distinct roles for H2A.Z and SWRlc components in gene regulation, and sug- gest a potential role for PIE1 in the regulation of the cross talk between defense signaling pathways. Our data show that although they are part of the same complex, Arabidopsis SWRlc components could have non-redundant functions in plant immunity and gene regulation. 展开更多
关键词 ARABIDOPSIS SWR1 chromatin remodeling H2A.Z IMMUNITY gene regulation
原文传递
PRMT5 in gene regulation and hematologic malignancies 被引量:4
6
作者 Fen Zhu Lixin Rui 《Genes & Diseases》 SCIE 2019年第3期247-257,共11页
Arginine methylation is a common posttranslational modification that governs important cellular processes and impacts development,cell growth,proliferation,and differentiation.Arginine methylation is catalyzed by prot... Arginine methylation is a common posttranslational modification that governs important cellular processes and impacts development,cell growth,proliferation,and differentiation.Arginine methylation is catalyzed by protein arginine methyltransferases(PRMTs),which are classified as type I and type II enzymes responsible for the formation of asymmetric and symmetric dimethylarginine,respectively.PRMT5 is the main type II enzyme that catalyzes symmetric dimethylarginine of histone proteins to induce gene silencing by generating repressive histone marks,including H2AR3me2s,H3R8me2s,and H4R3me2s.PRMT5 can also methylate nonhistone proteins such as the transcription factors p53,E2F1 and p65.Modifications of these proteins by PRMT5 are involved in diverse cellular processes,including transcription,translation,DNA repair,RNA processing,and metabolism.A growing literature demonstrates that PRMT5 expression is upregulated in hematologic malignancies,including leukemia and lymphoma,where PRMT5 regulates gene expression to promote cancer cell proliferation.Targeting PRMT5 by specific inhibitors has emerged as a potential therapeutic strategy to treat these diseases. 展开更多
关键词 gene regulation Hematologic malignancies METABOLISM PATHOgeneSIS PRMT5
原文传递
Toward an understanding of the relation between gene regulation and 3D genome organization 被引量:1
7
作者 Hao Tian Ying Yang +2 位作者 Sirui Liu Hui Quan Yi Qin Gao 《Quantitative Biology》 CAS CSCD 2020年第4期295-311,共17页
Background:High-order chromatin structure has been shown to play a vital role in gene regulation.Previously we identified two types of sequence domains,CGI(CpG island)forest and CGI prairie,which tend to spatially seg... Background:High-order chromatin structure has been shown to play a vital role in gene regulation.Previously we identified two types of sequence domains,CGI(CpG island)forest and CGI prairie,which tend to spatially segregate,but to different extent in different tissues.Here we aim to further quantify the association of domain segregation with gene regulation and therefore differentiation.Methods:By means of the published RNA-seq and Hi-C data,we identified tissue-specific genes and quantitatively investigated how their regulation is relevant to chromatin structure.Besides,two types of gene networks were constructed and the association between gene pair co-regulation and genome organization is discussed.Results:We show that compared to forests,tissue-specific genes tend to be enriched in prairies.Highly specific genes also tend to cluster according to their functions in a relatively small number of prairies.Furthermore,tissue-specific forest-prairie contact formation was associated with the regulation of tissue-specific genes,in particular those in the prairie domains,pointing to the important role of gene positioning,in the linear DNA sequence as well as in 3D chromatin structure,in gene regulatory network formation.Conclusion:We investigated how gene regulation is related to genome organization from the perspective of forest-prairie spatial interactions.Since unlike compartments A and B,forest and prairie are identified solely based on sequence properties.Therefore,the simple and uniform framework(forest-prairie domain segregation)provided here can be utilized to further understand the chromatin structure changes as well as the underlying biological significances in different stages,such as tumorgenesis. 展开更多
关键词 CGI forest CGI prairie domain segregation chromatin structure gene regulation
原文传递
A modified Gillespie algorithm for E.coli gene regulation systems
8
作者 罗若愚 《生物物理学报》 CAS CSCD 北大核心 2009年第S1期10-10,共1页
The dynamics of complex gene regulation systems can be simulated by the Gillespie algorithm. The classic Gillespie algorithm is appropriate to simulate a stochastic
关键词 COLI A modified Gillespie algorithm for E.coli gene regulation systems gene
原文传递
Reprogramming the endogenous type I CRISPR-Cas system for simultaneous gene regulation and editing in Haloarcula hispanica 被引量:1
9
作者 Kaixin Du Luyao Gong +2 位作者 Ming Li Haiying Yu Hua Xiang 《mLife》 2022年第1期40-50,共11页
The type I system is the most widely distributed CRISPR-Cas system identified so far.Recently,we have revealed the natural reprogramming of the type I CRISPR effector for gene regulation with a crRNA-resembling RNA in... The type I system is the most widely distributed CRISPR-Cas system identified so far.Recently,we have revealed the natural reprogramming of the type I CRISPR effector for gene regulation with a crRNA-resembling RNA in halophilic archaea.Here,we conducted a comprehensive study of the impact of redesigned crRNAs with different spacer lengths on gene regulation with the native type I-B CRISPR system in Haloarcula hispanica.When the spacer targeting the chromosomal gene was shortened from 36 to 28 bp,transformation efficiencies of the spacer-encoding plasmids were improved by over three orders of magnitude,indicating a significant loss of interference.However,by conducting whole-genome sequencing and measuring the growth curves of the hosts,we still detected DNA cleavage and its influence on cell growth.Intriguingly,when the spacer was shortened to 24 bp,the transcription of the target gene was downregulated to 10.80%,while both interference and primed adaptation disappeared.By modifying the lengths of the spacers,the expression of the target gene could be suppressed to varying degrees.Significantly,by designing crRNAs with different spacer lengths and targeting different genes,we achieved simultaneous gene editing(cdc6E)and gene regulation(crtB)for the first time with the endogenous type I CRISPR-Cas system. 展开更多
关键词 CRISPR-Cas system gene editing gene regulation type I
原文传递
Nucleosomal Context of Binding Sites Influences Transcription Factor Binding Affinity and Gene Regulation
10
作者 Zhiming Dai Xianhua Dai Qian Xiang Jihua Feng 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2009年第4期155-162,共8页
Transcription factor (TF) binding to its DNA target site plays an essential role in gene regulation. The location, orientation and spacing of transcription factor binding sites (TFBSs) also affect regulatory funct... Transcription factor (TF) binding to its DNA target site plays an essential role in gene regulation. The location, orientation and spacing of transcription factor binding sites (TFBSs) also affect regulatory function of the TF. However, how nucleosomal context of TFBSs influences TF binding and subsequent gene regulation remains to be elucidated. Using genome-wide nucleosome positioning and TF binding data in budding yeast, we found that binding affinities of TFs to DNA tend to decrease with increasing nucleosome occupancy of the associated binding sites. We further demonstrated that nucleosomal context of binding sites is correlated with gene regulation of the corresponding TF. Nucleosome-depleted TFBSs are linked to high gene activity and low expression noise, whereas nucleosome-covered TFBSs are associated with low gene activity and high expression noise. Moreover, nucleosome-covered TFBSs tend to disrupt coexpression of the corresponding TF target genes. We conclude that nucleosomal context of binding sites influences TF binding affinity, subsequently affecting the regulation of TFs on their target genes. This emphasizes the need to include nucleosomal context of TFBSs in modeling gene regulation. 展开更多
关键词 gene regulation NUCLEOSOME transcription factor binding site
原文传递
MeCP2:multifaceted roles in gene regulation and neural development 被引量:5
11
作者 Tian-Lin Cheng Zilong Qiu 《Neuroscience Bulletin》 SCIE CAS CSCD 2014年第4期601-609,共9页
Methyl-CpG-binding protein 2 (MeCP2) is a classic methylated-DNA-binding protein, dysfunctions of which lead to various neurodevelopmental disorders such as Rett syndrome and autism spectrum disorder. Initially reco... Methyl-CpG-binding protein 2 (MeCP2) is a classic methylated-DNA-binding protein, dysfunctions of which lead to various neurodevelopmental disorders such as Rett syndrome and autism spectrum disorder. Initially recognized as a transcriptional repressor, MeCP2 has been studied extensively and its functions have been expanded dramatically in the past two decades. Recently, it was found to be involved in gene regulation at the post-transcriptional level. MeCP2 represses nuclear microRNA processing by interacting directly with the Drosha/DGCR8 complex. In addition to its multifaceted functions, MeCP2 is remarkably modulated by post- translational modifications such as phosphorylation, SUMOylation, and acetylation, providing more regulatory dimensions to its functions. The role of MeCP2 in the central nervous system has been studied extensively, from neurons to glia. Future investigations combining molecular, cellular, and physiological methods are necessary for defining the roles of MeCP2 in the brain and developing efficient treatments for MeCP2-related brain disorders. 展开更多
关键词 MECP2 Rett syndrome central nervous system gene expression regulation post-translationalmodification post-transcriptional regulation GLIA
原文传递
Regulation of HIF-1 α to Expression of N-myc Downstream Regulated Gene 1 in Colorectal Carcinoma
12
作者 ZHAO Duanyi LIU Zhisu +3 位作者 JIANG Congqing BANGOURA Gassimou WU Kailang WU Jianauo 《Wuhan University Journal of Natural Sciences》 CAS 2007年第3期563-568,共6页
Plasmid expressing small interfering RNA (siRNA) against HIF-1α (pSilence-2.1-U6-siRNA) was constructed and transfected into LS174T cells in hypoxia condition.After expression of siRNA against HIF-1 α in LS174T ... Plasmid expressing small interfering RNA (siRNA) against HIF-1α (pSilence-2.1-U6-siRNA) was constructed and transfected into LS174T cells in hypoxia condition.After expression of siRNA against HIF-1 α in LS174T cells, expressions of HIF-1 α and N-myc downstream regulated gene 1 (NDRG1) gene were inhibited significantly. HIF-1 cta transcripts were positive in 67.7% (42/62) and 44.4% (8/18) of colorectal adenocarcinoma and adenoma, re- spectively. The mean percentage of cells with positive hybridization of HIF-1 α mRNA increases with the development from Duke stage A to stage C+D (p〈 0.05). The positive staining rate of NDRG1 protein was significant higher in than that in colorectal adenoma colorectal adenocarcinoma group group (p〈 0.05). The level of HIF-1 a transcripts was positively correlated with the level of NDRG1 protein (p 〈 0.05) during colorectal tumor progression. HIF-1α and its down stream gene NDRG1 may play roles in tumor progression of human colorectal carcinoma. 展开更多
关键词 hypoxia inducible factor-1 α (HIF-1 α N-myc downstream regulated gene 1 small interfering RNA colorectal carcinoma
下载PDF
Regulatory role of NFAT1 signaling in articular chondrocyteactivities and osteoarthritis pathogenesis
13
作者 MINGCAI ZHANG TANNER CAMPBELL +1 位作者 SPENCER FALCON JINXI WANG 《BIOCELL》 SCIE 2023年第10期2125-2132,共8页
Osteoarthritis (OA), the most common form of joint disease, is characterized clinically by joint pain, stiffness,and deformity. OA is now considered a whole joint disease;however, the breakdown of the articular cartil... Osteoarthritis (OA), the most common form of joint disease, is characterized clinically by joint pain, stiffness,and deformity. OA is now considered a whole joint disease;however, the breakdown of the articular cartilage remains themajor hallmark of the disease. Current treatments targeting OA symptoms have a limited impact on impeding orreversing the OA progression. Understanding the molecular and cellular mechanisms underlying OA development isa critical barrier to progress in OA therapy. Recent studies by the current authors’ group and others have revealedthat the nuclear factor of activated T cell 1 (NFAT1), a member of the NFAT family of transcription factors, regulatesthe expression of many anabolic and catabolic genes in articular chondrocytes of adult mice. Mice lacking NFAT1exhibit normal skeletal development but display OA in both appendicular and spinal facet joints as adults. Thisreview mainly focuses on the recent advances in the regulatory role of NFAT1 transcription factor in the activities ofarticular chondrocytes and its implication in the pathogenesis of OA. 展开更多
关键词 OSTEOARTHRITIS CHONDROCYTE NFAT1 Transcription factor regulation of gene expression
下载PDF
The virulence regulator AbsR in avian pathogenic Escherichia coli has pleiotropic effects on bacterial physiology
14
作者 Dongfang Zhao Haobo Zhang +4 位作者 Xinyang Zhang Fengwei Jiang Yijing Li Wentong Cai Ganwu Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期649-668,共20页
Avian pathogenic Escherichia coli(APEC)belonging to extraintestinal pathogenic E.coli(ExPEC)can cause severe infections in extraintestinal tissues in birds and humans,such as the lungs and blood.MprA(microcin producti... Avian pathogenic Escherichia coli(APEC)belonging to extraintestinal pathogenic E.coli(ExPEC)can cause severe infections in extraintestinal tissues in birds and humans,such as the lungs and blood.MprA(microcin production regulation,locus A,herein renamed AbsR,a blood survival regulator),a member of the MarR(multiple antibiotic resistance regulator)transcriptional regulator family,governs the expression of capsule biosynthetic genes in human ExPEC and represents a promising druggable target for antimicrobials.However,a deep understanding of the AbsR regulatory mechanism as well as its regulon is lacking.In this study,we present a systems-level analysis of the APEC AbsR regulon using ChIP-Seq(chromatin immunoprecipitation sequencing)and RNA-Seq(RNA sequencing)methods.We found that AbsR directly regulates 99 genes and indirectly regulates 667 genes.Furthermore,we showed that:1)AbsR contributes to antiphagocytotic effects by macrophages and virulence in a mouse model for systemic infection by directly activating the capsular gene cluster;2)AbsR positively impacts biofilm formation via direct regulation of the T2SS(type II secretion system)but plays a marginal role in virulence;and 3)AbsR directly upregulates the acid tolerance signaling system EvgAS to withstand acid stress but is dispensable in ExPEC virulence.Finally,our data indicate that the role of AbsR in virulence gene regulation is relatively conserved in ExPEC strains.Altogether,this study provides a comprehensive analysis of the AbsR regulon and regulatory mechanism,and our data suggest that AbsR likely influences virulence primarily through the control of capsule production.Interestingly,we found that AbsR severely represses the expression of the type I-F CRISPR(clustered regularly interspaced short palindromic repeats)-Cas(CRISPR associated)systems,which could have implications in CRISPR biology and application. 展开更多
关键词 avian pathogenic Escherichia coli(APEC) extraintestinal pathogenic Escherichia coli(ExPEC) AbsR RNA-SEQ CHIP-SEQ gene regulation
下载PDF
Molecular aspects of carcinogenesis in pancreatic cancer 被引量:4
15
作者 Alexandros Koliopanos Constantinos Avgerinos +3 位作者 Constantina Paraskeva Zisis Touloumis Dionisisa Kelgiorgi Christos Dervenis 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2008年第4期345-356,共12页
BACKGROUND:Pancreatic cancer(PCa)is one of the most aggressive human solid tumors,with rapid growth and metastatic spread as well as resistance to chemotherapeutic drugs,leading rapidly to virtually incurable disease.... BACKGROUND:Pancreatic cancer(PCa)is one of the most aggressive human solid tumors,with rapid growth and metastatic spread as well as resistance to chemotherapeutic drugs,leading rapidly to virtually incurable disease.Over the last 20 years,however,significant advances have been made in our understanding of the molecular biology of PCa,with a focus on the cytogenetic abnormalities in PCa cell growth and differentiation. DATA SOURCES:A MEDLINE search and manual cross- referencing were utilized to identify published data for PCa molecular biology studies between 1986 and 2008, with emphasis on genetic alterations and developmental oncology. RESULTS:Activation of oncogenes,deregulation of tumor suppressor and genome maintenance genes,upregulation of growth factors/growth factor receptor signaling cascade systems,and alterations in cytokine expression,have been reported to play important roles in the process of pancreatic carcinogenesis.Alterations in the K-ras proto- oncogene and the p16INK4a,p53,FHIT,and DPC4 tumor suppressor genes occur in a high percentage of tumors. Furthermore,a variety of growth factors are expressed at increased levels.In addition,PCa often exhibits alterations in growth inhibitory pathways and evades apoptosis through p53 mutations and aberrant expression of apoptosis-regulating genes,such as members of the Bcl family.Additional pathways in the development of an aggressive phenotype,local infiltration and metastasis are still under ongoing genetic research.The present paper reviews recent studies on the pathogenesis of PCa,and includes a brief reference to alterations reported for other types of pancreatic tumor. CONCLUSIONS:Advances in molecular genetics and biology have improved our perception of the pathogenesis of PCa.However,further studies are needed to better understand the fundamental changes that occur in PCa,thus leading to better diagnostic and therapeutic management. 展开更多
关键词 CARCINOgeneSIS gene regulation cell growth signaling growth factors growth factor receptors APOPTOSIS CYTOKINES
下载PDF
Transcriptional regulation of adult neural stem/progenitor cells: tales from the subventricular zone 被引量:2
16
作者 Giancarlo Poiana Roberta Gioia +3 位作者 Serena Sineri Silvia Cardarelli Giuseppe Lupo Emanuele Cacci 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第10期1773-1783,共11页
In rodents,well characterized neurogenic niches of the adult brain,such as the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus,support the maintenance of neural/stem progenito... In rodents,well characterized neurogenic niches of the adult brain,such as the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus,support the maintenance of neural/stem progenitor cells(NSPCs)and the production of new neurons throughout the lifespan.The adult neurogenic process is dependent on the intrinsic gene expression signatures of NSPCs that make them competent for self-renewal and neuronal differentiation.At the same time,it is receptive to regulation by various extracellular signals that allow the modulation of neuronal production and integration into brain circuitries by various physiological stimuli.A drawback of this plasticity is the sensitivity of adult neurogenesis to alterations of the niche environment that can occur due to aging,injury or disease.At the core of the molecular mechanisms regulating neurogenesis,several transcription factors have been identified that maintain NSPC identity and mediate NSPC response to extrinsic cues.Here,we focus on REST,Egr1 and Dbx2 and their roles in adult neurogenesis,especially in the subventricular zone.We review recent work from our and other laboratories implicating these transcription factors in the control of NSPC proliferation and differentiation and in the response of NSPCs to extrinsic influences from the niche.We also discuss how their altered regulation may affect the neurogenic process in the aged and in the diseased brain.Finally,we highlight key open questions that need to be addressed to foster our understanding of the transcriptional mechanisms controlling adult neurogenesis. 展开更多
关键词 adult neurogenesis aging extracellular signaling gene regulation neural stem/progenitor cells transcription factors
下载PDF
Transcriptional regulation of human polo-like kinases and early mitotic inhibitors 被引量:1
17
作者 Moe Tategu Hiroki Nakagawa +5 位作者 Kaori Sasaki Rieko Yamauchi Sota Sekimachi Yuka Suita Naoko Watanabe Kenichi Yoshida 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2008年第4期215-224,共10页
Human polo-like kinases (PLK1-PLK4) have been implicated in mitotic regulation and carcinogenesis. PLK1 phosphorylates early mitotic inhibitor 1 (Emil) to ensure mitosis entry, whereas Emi2 plays a key role during... Human polo-like kinases (PLK1-PLK4) have been implicated in mitotic regulation and carcinogenesis. PLK1 phosphorylates early mitotic inhibitor 1 (Emil) to ensure mitosis entry, whereas Emi2 plays a key role during the meiotic cell cycle. Transcription factor E2F is primarily considered to regulate the G1/S transition of the cell cycle but its involvement in the regulation of mitosis has also been recently suggested. A gap still exists between the molecular basis of E2F and mitotic regulation. The present study was designed to characterize the transcriptional regulation of human PLK and Emi genes. Adenoviral overexpression of E2F1 increased PLK1 and PLK3 mRNA levels in A549 cells. A reporter gene assay revealed that the putative promoter regions of PLK1, PLK3, and PLK4 genes were responsive to activators E2F, E2F1-E2F3. We further characterized the putative promoter regions of Emil and Emi2 genes, and these could be regulated by activators E2F and E2F1-E2F4, respectively. Finally, PLK1-PLK4, Emil, and Emi2 mRNA expression levels in human adult, fetal tissues, and several cell lines indicated that each gene has a unique expression pattern but is uniquely expressed in common tissues and cells such as the testes and thymus. Collectively, these results indicate that E2F can integrate G1/S and G2/M to oscillate the cell cycle by regulating mitotic genes PLK and Emi, leading to determination of the cell fate. 展开更多
关键词 polo-like kinase early mitotic inhibitor cell cycle E2F promoter gene regulation
下载PDF
Inducing agent tamoxifen of CreER^(T2) to reduce the side effects of gene therapy for Parkinson’s disease 被引量:1
18
作者 Xiaogang Li Dongsheng Fan +4 位作者 Weizhong Xiao Yang Shen Shin-ichi Muramatsu O Keiya OzawaO Imaharu Nakano O 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第8期591-596,共6页
BACKGROUND:Gene therapy for Parkinson's disease is being explored as an effective strategy to restore and protect the function of neuronal cells in the substantia nigra. Regulation of gene expression is necessary fo... BACKGROUND:Gene therapy for Parkinson's disease is being explored as an effective strategy to restore and protect the function of neuronal cells in the substantia nigra. Regulation of gene expression is necessary for gene therapy to avoid adverse effects due to excessive synthesis of transgene products.OBJECTIVE:Here we developed recombinant adeno-associated virus (AAV) as a viral vector-mediated gene regulation system based on Cre recombinase fused to the mutated ligand-binding domain of the estrogen receptor (CreERT2) + inducing agent tamoxifen. Inducible Cre recombinase was used to reduce tyrosine hydroxylase gene expression and to prevent the excessive increase in dopamine.DESIGN, TIME AND SETTING:A genetic engineering in vitro comparative study and randomized controlled animal experiment. This study was conducted at the Gene Therapy Center, Jichi Medical School, Japan from June 2002 to June 2004.METHODS:To construct a recombinant AAV vector carrying a dopamine synthase gene. The tyrosine hydroxylase gene was inserted using a IoxP fragment that could be regulated by Cre recombinase. The recombinant AAV vector carrying the CreERT2 gene was co-transduced with HEK293 cells and the corpus striatum in a rat model of Parkinson's disease, with inducing agent tamoxifen to regulate gene expression.MAIN OUTCOME MEASURES:The levels of dopamine and aromatic L-amino acid decarboxylase (AADC) activity were detected in HEK293 cell medium and in the corpus striatum in a rat model of Parkinson's disease using high-performance liquid chromatography. Immunofluorescence double staining was used to observe tyrosine hydroxylase and Cre or AADC co-expression in HEK293 cell medium. Immunohistochemical staining was employed to observe tyrosine hydroxylase and AADC expression and behavioral changes were measured in Parkinson's rats.RESULTS:Transfected AAV-CreERT2 and AAV expressing dopamine synthesis enzymes could increase the synthesis of dopamine in HEK293 medium and Parkinson's rat striatum (P 〈 0.01) and improve the rotational behavior of Parkinson's rats. While tamoxifen markedly reduced overproduction of dopamine caused by cotransfection of viral vectors (P 〈 0.01), but did not affect the expression and activity of AADC.CONCLUSION:The application of AAV vector-encoded tyrosine hydroxylase gene under the gene regulation system of Cre-ERT2〉, after tamoxifen treatment, can effectively control the generation of genetically modified products to reduce the production of excessive dopamine in vivo and in vitro. Therefore, this method can increase the safety of gene therapy. 展开更多
关键词 adeno-associated virus Cre recombinase tyrosine hydroxylase gene regulation Parkinson's disease neural regeneration
下载PDF
Exploring the dynamic three-dimensional chromatin architecture and transcriptional landscape in goose liver tissues underlying metabolic adaptations induced by a high-fat diet
19
作者 Guangliang Gao Rui Liu +9 位作者 Silu Hu Mengnan He Jiaman Zhang Dengfeng Gao Jing Li Jiwei Hu Jiwen Wang Qigui Wang Mingzhou Li Long Jin 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第4期1494-1511,共18页
Background Goose, descendants of migratory ancestors, have undergone extensive selective breeding, resulting in their remarkable ability to accumulate fat in the liver and exhibit a high tolerance for significant ener... Background Goose, descendants of migratory ancestors, have undergone extensive selective breeding, resulting in their remarkable ability to accumulate fat in the liver and exhibit a high tolerance for significant energy intake. As a result, goose offers an excellent model for studying obesity, metabolic disorders, and liver diseases in mammals. Although the impact of the three-dimensional arrangement of chromatin within the cell nucleus on gene expression and transcriptional regulation is widely acknowledged, the precise functions of chromatin architecture reorganization during fat deposition in goose liver tissues still need to be fully comprehended.Results In this study, geese exhibited more pronounced changes in the liver index and triglyceride(TG) content following the consumption of the high-fat diet(HFD) than mice without significant signs of inflammation. Additionally, we performed comprehensive analyses on 10 goose liver tissues(5 HFD, 5 normal), including generating highresolution maps of chromatin architecture, conducting whole-genome gene expression profiling, and identifying H3K27ac peaks in the livers of geese and mice subjected to the HFD. Our results unveiled a multiscale restructuring of chromatin architecture, encompassing Compartment A/B, topologically associated domains, and interactions between promoters and enhancers. The dynamism of the three-dimensional genome architecture, prompted by the HFD, assumed a pivotal role in the transcriptional regulation of crucial genes. Furthermore, we identified genes that regulate chromatin conformation changes, contributing to the metabolic adaptation process of lipid deposition and hepatic fat changes in geese in response to excessive energy intake. Moreover, we conducted a cross-species analysis comparing geese and mice exposed to the HFD, revealing unique characteristics specific to the goose liver compared to a mouse. These chromatin conformation changes help elucidate the observed characteristics of fat deposition and hepatic fat regulation in geese under conditions of excessive energy intake.Conclusions We examined the dynamic modifications in three-dimensional chromatin architecture and gene expression induced by an HFD in goose liver tissues. We conducted a cross-species analysis comparing that of mice. Our results contribute significant insights into the chromatin architecture of goose liver tissues, offering a novel perspective for investigating mammal liver diseases. 展开更多
关键词 Compartment A/B Goose fatty liver Promoter-enhancer interactions regulation of gene expression
下载PDF
Two memory associated genes regulated by amyloid precursor protein intracellular domain Novel insights into the pathogenesis of learning and memory impairment in Alzheimer's disease
20
作者 Chuandong Zheng Xi Gu Zhimei Zhong Rui Zhu Tianming Gao Fang Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第5期341-346,共6页
In this study, we employed chromatin immunoprecipitation, a useful method for studying the locations of transcription factors bound to specific DNA regions in specific cells, to investigate amyloid precursor protein i... In this study, we employed chromatin immunoprecipitation, a useful method for studying the locations of transcription factors bound to specific DNA regions in specific cells, to investigate amyloid precursor protein intracellular domain binding sites in chromatin DNA from hippocampal neurons of rats, and to screen out five putative genes associated with the learning and memory functions. The promoter regions of the calcium/calmodulin-dependent protein kinase II alpha and glutamate receptor-2 genes were amplified by PCR from DNA products immunoprecipitated by amyloid precursor protein intracellular domain. An electrophoretic mobility shift assay and western blot analysis suggested that the promoter regions of these two genes associated with learning and memory were bound by amyloid precursor protein intracellular domain (in complex form). Our experimental findings indicate that the amyloid precursor protein intracellular domain is involved in the transcriptional regulation of learning- and memory-associated genes in hippocampal neurons. These data may provide new insights into the molecular mechanism underlying the symptoms of progressive memory loss in Alzheimer's disease. 展开更多
关键词 Alzheimer's disease amyloid precursor protein amyloid precursor protein intracellular domain chromatin immunoprecipitation gene regulation chromatin DNA
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部