AIM:To study the genetic alteration in ACF and to define the possibility that ACF may be a very early morphological lesion with molecular changes,and to explore the relationship between ACF and colorectal adenoma even...AIM:To study the genetic alteration in ACF and to define the possibility that ACF may be a very early morphological lesion with molecular changes,and to explore the relationship between ACF and colorectal adenoma even carcinoma. METHODS: DNA from 35 CRC, 15 adenomas, 34 ACF and 10 normal mucus was isolated by means of microdissection. Direct gene sequencing of K-ras gene including codon 12, 13 and 61 as well as the mutation cluster region (MCR) of APC gene was performed. RESULTS: K-ras gene mutation frequency in ACF, adenoma and carcinoma was 17.6% (6/34), 13.3% (2/15), and 14.3% (5/35) respectively, showing no difference (P 】 0.05) in K-ras gene mutation among three pathologic procedures. The K-ras gene mutation in adenoma, carcinoma and 4 ACF restricted in codon 12 (GGT GAT), but the other 2 mutations from ACF located in codon 13 (GGC GAC). K-ras gene mutation was found more frequently in older patients and patients with polypoid cancer. No mutation in codon 61 was found in the three tissue types. Mutation rate of APC gene in adenoma and carcinoma was 22.9% (8/35) and 26.7% (4/15), which was higher than ACF (2.9%) (P 【0.05). APC gene mutation in carcinoma was not correlated with age of patients, location, size and differentiation of tumor. CONCLUSION: ACF might be a very early morphological lesion in the tumorogenesis of colorectal tumor. The morphological feature and gene mutation status was different in ACF and adenoma. ACF is possibly putative microadenoma that might be the precursor of adenoma. In addition, the development of a subgroup of colorectal carcinomas might undergo a way of normal epithelium ACF carcinomas .展开更多
INTRODUCTIONThe point mutation rate of k-ras gene at codon 12 inpancreatic adenocarcinoma is reported to be as highas 90%,and with no mutations in normalpancreas tissues or other pancreatic disorders.Wehave detected t...INTRODUCTIONThe point mutation rate of k-ras gene at codon 12 inpancreatic adenocarcinoma is reported to be as highas 90%,and with no mutations in normalpancreas tissues or other pancreatic disorders.Wehave detected the presence of k-ras gene展开更多
Summary: The specific anti-tumor immune response induced by mouse bone marrow dendritic cells (DCs) lransfected with recombinant adenovirus carrying mutant k-ras genes was investighted. DCs were generated from mous...Summary: The specific anti-tumor immune response induced by mouse bone marrow dendritic cells (DCs) lransfected with recombinant adenovirus carrying mutant k-ras genes was investighted. DCs were generated from mouse bone marrow in the presence of rmGM-CSF (3.3 ng/mL) and rmIL-4 (1.3 ng/mL) and detected by FACS, and then transfecled with the recombinant adenovirus encoding mutant k ras gene. The efficacy of transfection and T cell stimulating activity of DCs were detected. CTL activity of the mice vaccinated with DCs was observed. The resuhs showed thai DCs had dendritic veiled morphology. BmDCs highly expressed B7-1(80%), B7-2(77%), MHC Ⅱ (70%), CDllc (65%), CD40 (70%) and CD54 (96%) with FACS, and no significant difference in the expression was observed before and after the transfection (P〈0.05). The DCs transfeeled by mutant k-ras gene could significantly stimulate lymphoeytes proliferation as compared with those transfeeted by Ad e or non-modified DCs (P〈0.05). DC vaccine transfected by mutant k-ras gene could induce CTL activity against Lewis lung cancer, but not against B16. The specific eytotoxicity against Lewis lung cancer in Ad-k-ras/12-transdueed DC group was signifieantly higher than those in the control, vector and non transfeeted DCs groups (P〈0.05). It was concluded that special antitumor response could be induced by DCs transfected with recombinant adenovirus carrying mutant k-ras genes.展开更多
AIM: To investigate the functions of promoter hypermethylation of O6-methylguanine-DNA methyltransferase (MGMT) gene in colorectal tumorigenesis and progression.METHODS: The promoter hypermethylation of MGMT gene was ...AIM: To investigate the functions of promoter hypermethylation of O6-methylguanine-DNA methyltransferase (MGMT) gene in colorectal tumorigenesis and progression.METHODS: The promoter hypermethylation of MGMT gene was detected in 27 sporadic colorectal adenomas,62 sporadic colorectal carcinomas and 20 normal colorectal mucosa tissues by methylation-specific PCR. At the same time, the expression of MGMT protein was carried out in the same samples using immunohistochemistry. Mutantallele-specific amplification was used to detect K-rasG to A point mutation in codon 12.RESULTS: None of the normal colorectal mucosa tissues showed methylated bands. Promoter hypermethylation was detected in 40.7% (11 of 27) of adenomas and 43.5% (27 of 62) of carcinomas. MGMT proteins were expressed in nucleus and cytoplasm of normal colorectal mucosa tissues. Loss of MGMT expression was found in 22.2% (6 of 27) of adenomas and 45.2% (28 of 62) of carcinomas. The difference between them was significant (P = 0.041). In the 6 adenomas and 28 carcinomas losing MGMT expression, 5 and 24 cases presented methylation,respectively (P = 0.027, P<0.001). Thirteen of the 19 colorectal tumors with K-rasG to A point mutation in codon 12 had methylated MGMT(P = 0.011). The frequencies of K-rasG to A point mutation were 35.3% (12 of 34) and 12.7% (7 of 55) in tumors losing MGMT expression and with normal expression, respectively.CONCLUSION: Promoter hypermethylation and loss of expression of MGMT gene were common events in colorectal tumorigenesis, and loss of expression of MGMT occurs more frequently in carcinomas than in adenomas in sporadic patients. Hypermethylation of the CpG island of MGMT gene was associated with loss of MGMT expression and K-ras G to A point mutation in colorectal tumor. The frequency of K-ras G to A point mutation was increased in tumors losing MGMT expression. It suggests that epigenetic inactivation of MGMT plays an important role in colorectal neoplasia.展开更多
Objective:To study the role of the mutations of p53, APC and K-ras genes in 47 cases of 3 types of intestinal metaplasia (IM) of gastric mucosa. Methods:In 47 cases of IM, exons 5- 8 of p53 and exons 15 of APC were ex...Objective:To study the role of the mutations of p53, APC and K-ras genes in 47 cases of 3 types of intestinal metaplasia (IM) of gastric mucosa. Methods:In 47 cases of IM, exons 5- 8 of p53 and exons 15 of APC were examined with PCR-SSCP and codon 12 of K-ras with PCR-RFLP to detect the existence of any mutations of these structures. Results:Muta- tions of p53, APC and K-ras were found in 29.8% (14/47),6.4% (3/47) and 6.4% (3/47) respectively in our series of patients who consisted of 33 with types I and II and 14 with type III of IM. The mutation rate of p53 was far higher in patients with type III IM (57.1%,8/14) than in those with types I and II IM(18.2%,6/33)(P <0.05). Though the mutation rate of APC and K-ras was also higher in the patients with type III IM than in those with types I and II IM, it was of no statistical significance (P >0.05). In one case of type III IM, mutation of both p53 and K-ras was found. Conclusion: The molecular changes of 3 types of IM are different. The mutation of p53 may be closely related to carcinogenesis in cases of type III IM and it serve as a sign for the early diagnosis of gastric carcinoma.展开更多
Objective: To detect the style of K-ras gene point mutation in human pancreatic cancer cell line PANC-1 and decide the bp sequence of Ras target position interfered by RNA. Methods: Three kinds of special sequence p...Objective: To detect the style of K-ras gene point mutation in human pancreatic cancer cell line PANC-1 and decide the bp sequence of Ras target position interfered by RNA. Methods: Three kinds of special sequence primers (SSP) for polymerase chain reaction (PCR) with regard to the mutation styles (OAT, COT and GOT) at codon 12 of K-ras were used to study the human pancreatic cancer cell line PANC-1. The amplification products were studied with polyacrylamine gel electrophoresis to detect the style of point mutation. Results: The style of K-ras gene point mutation at codon 12 was OAT in human pancreatic cancer cell line. Conclusion: PCR-SSP is rapid, convenient and high specific. The results provide a basis for further gene therapy by RNA interference for pancreatic cancer.展开更多
AIM: To further elucidate the possible molecular biological activity of wild type K-ras2 gene by detecting changes in wild type K-ras2 gene-induced gene-expression profiles of colon carcinoma cells using cDNA microarr...AIM: To further elucidate the possible molecular biological activity of wild type K-ras2 gene by detecting changes in wild type K-ras2 gene-induced gene-expression profiles of colon carcinoma cells using cDNA microarray techniques. METHODS: Total RNA was isolated from peripheral blood of health volunteers. Reverse transcription of RNA and polymerase chain reaction were used to synthesize wild type K-ras2 cDNA. K-ras2 cDNA fragment was cloned into a T easy vector and sequenced. A eukaryotic expression vector pCI-neo-K-ras2 was constructed and transfected to Caco2 cell line using the liposome method. Finally, mRNA was isolated, reverse-transcribed to cDNA from pCI-neo-K-ras2 or pCI-neo blank vector-transfected Caco cells, and analyzed by cDNA microarray assay. RESULTS: Restriction enzyme analysis and DNA sequencing verified that the constructed expression vector was accurate. High-quality RNA was extracted and reverse transcribed to cDNA for microarray assay. Among the 135 genes, the expression was up-regulated in 24 and down-regulated in 121. All these differentially expressed genes were related to cell proliferation, differentiation, apoptosis and signal transduction. CONCLUSION: Differentially expressed genes can be successfully screened from wild type K-ras2-transfected colon carcinoma cells using microarray techniques. The results of our study suggest that wild type K-ras2 is related to the negative regulation of cell proliferation, metabolism and transcriptional control, and provide new clues to the further elucidation of its possible biological activity.展开更多
In a total of 83 UN specimens were investigated for proto-oncogene mutations, tumor supressor genes promoter methylation status and c-myc and Ki-67 expression. Point mutations in c-myc were detected in cases with high...In a total of 83 UN specimens were investigated for proto-oncogene mutations, tumor supressor genes promoter methylation status and c-myc and Ki-67 expression. Point mutations in c-myc were detected in cases with high grade and proliferation index. Mutated K-ras proto-onco- gene profiles were detected in 17 (21%) tumoral spiecemens that examined. Tumor specimens were also showed hypermethylated promoter domain for the SFRP2, MGMT tumor supressor genes. These findings showed the combine effect of mutated c-myc and K-ras oncogene and epigenetic inactivation of tissue specific tumor supressor genes (TS) play a crucial role in tumor progression and recurrence in UN carcinogenesis.展开更多
OBJECTIVE To investigate gene mutations of epidermal growth factor receptor (EGFR) and K-RAS (Kirsten rat sarcoma viral oncogene) in Chinese patients with non-small cell lung cancer (NSCLC), and study the correl...OBJECTIVE To investigate gene mutations of epidermal growth factor receptor (EGFR) and K-RAS (Kirsten rat sarcoma viral oncogene) in Chinese patients with non-small cell lung cancer (NSCLC), and study the correlation with its protein expression and its clinical significance on gefitinib.METHODS Detect the EGFR and K-RAS gene mutations status by gene sequencing and use the method of immunohistochemistry to detect EGFR and K-RAS protein expression.RESULTS The frequency of EGFR mutations was 33%, mainly located in exon 19 and exon 21. The frequency of K-RAS mutations was 5.5%, mainly located in codon 12. There was no case which both had EGFR and K-RAS mutations, suggesting a mutually exclusive relationship between the two. EGFR mutations are more common in adenocarcinomas (particularly those with bronchioloalveolar features), nonsmokers and females. 16% were detected EGFR positive expression and had no correlation with EGFR mutation (P 〉 0.05), but had significant correlation with mutation in exon 19 (P 〈 0.05). The frequency of K-RAS positive expression was 52.5% and had no correlation with K-RAS mutation (P 〉 0.05). Twelve (8 cases were protein-negative) out of 15 gefitinib-treated NSCLC patients with disease control carry EGFR mutations.CONCLUSION EGFR protein expression has some correlation with exon 19 mutations. Combined detection of EGFR and K-RAS gene mutations can help clinicians to choose patients who may benefit from EGFR tyrosine kinase inhibitor (EGFR-TKI) and to predict the response and prognosis of gefitinib.展开更多
AIM:To summarize progress in the study of K-ras gene studies in pancreatic cancer and its potential clinical significance in screening test for early detection of pancreatic cancer,and to differentiate pancreatic canc...AIM:To summarize progress in the study of K-ras gene studies in pancreatic cancer and its potential clinical significance in screening test for early detection of pancreatic cancer,and to differentiate pancreatic cancer from chronic pancreatitis in recent decade.METHODS:Literature search (MEDLINE 1986-2003) was performed using the key words K-ras gene, pancreatic cancer, chronic pancreatitis, and diagnosis. Two kind of opposite points of view on the significance of K-ras gene in detection early pancreatic cancer and differentiation pancreatic cancer from chronic pancreatitis were investigated.The presence of a K-ras gene mutation at codon 12 has been seen in 75-100% of pancreatic cancers, and is not rare in patients with chronic pancreatitis, and represents an increased risk of developing pancreatic cancer. However,the significance of the detection of this mutation in specimens obtained by needle aspiration from pure pancreatic juice and from stools for its utilization for the detection of early pancreatic cancer, and differentiation pancreatic cancer from chronic pancreatitis remains controversial.CONCLUSION:The value of K-ras gene mutation for the detection of early pancreatic cancer and differentiation pancreatic cancer from chronic pancreatitis remains uncertains in clinical pratice. Nevertheless, K-ras mutation screening may increase the sensitivity of FNA and ERP cytology and may be useful in identifying pancreatitis patients at high risk for developing cancer, and as a adjunct with cytology to differentiate pancreatic cancer from chronic pancreatitis.展开更多
AIM:To study the diagnostic significance of K-ras gene mutations in fecal samples from elderly patients with large intestinal cancer.METHODS: DNA was extracted in the fecal and tissue samples from 23 large intestinal ...AIM:To study the diagnostic significance of K-ras gene mutations in fecal samples from elderly patients with large intestinal cancer.METHODS: DNA was extracted in the fecal and tissue samples from 23 large intestinal cancer patients, 20 colonic adenomatoid polypus patients and 20 healthy subjects. The K-ras gene mutations at the first and second bases of codon 12 were detected by the allele specific mismatch method.RESULTS: The K-ras gene mutation was 56.52%(13/23) in the large intestinal cancer patients, which was notably higher than that in the normal subjects whose K-ras gene mutation was 5%(1/20) (x^2=12.93, P<0.001). There was no significant difference in comparison with that of colonic adenomatoid polypus patients whose K-ras gene mutation was 30%(6/12)(x^2=3.05, P>0.05). The K-ras gene mutation at the second base of codon 12 was 92.13%(12/13) in the large intestinal cancer patients. There was no significant difference between the detection rate of K-ras gene mutation in the fecal and tissue samples (X^2=9.35, P<0.01).CONCLUSION:Our results indicate that detection of the K-ras gene mutations in fecal samples provides a non-invasive diagnostic method for the elderly large intestinal cancer patients. Its significance in the early diagnosis of large intestinal cancer awaits further studies.展开更多
OBJECTIVE: To assess the diagnostic value of endoscopic pancreatic duct brushing in detecting mutation of the K-ras gene at codon 12 in cytologic specimens from patients with pancreatic cancer. METHODS: Thirty-five pa...OBJECTIVE: To assess the diagnostic value of endoscopic pancreatic duct brushing in detecting mutation of the K-ras gene at codon 12 in cytologic specimens from patients with pancreatic cancer. METHODS: Thirty-five patients treated at Changhai Hospital, Shanghai between 1999 and 2001 were enrolled. Their cells obtained by pancreatic duct brushing during endoscopic retrograde tholangiopancreatography (ERCP) were suspended with phosphate buffer solution (PBS). DNA of the cells was extracted and mutation of the K-ras gene at codon 12 detected by means of PCR-SSCP. RESULTS: The K-ras gene mutation rate of pancreatic cancer was 70%, which was higher than that of chronic pancreatitis (14%, P<0.05). K-ras gene mutation was not found in patients with pancreatic cystorcarcinoma and duodenum carcinoma. As to the location of pancreatic cancer, no significant difference was observed between the head, the body and tail. The sensitivity, specificity, accuracy of pancreatic duct brushing in detecting pancreatic cancer was 70%, 94%, and 83%, respectively. CONCLUSION: K-ras analysis of pancreatic brushing samples is helpful in the diagnosis of patients with early pancreatic cancer.展开更多
AIM: To clarify the molecular mechanism involved in pathogenesis of colorectal cancer as well as clinical significance of genetic analysis of histological samples.
AIM:To investigate frequency and clinical significance of K-ras mutations in pancreatic diseases and to identify its diagnostic values in pancreatic carcinoma.METHODS:117 ductal lesions were identified in the availabl...AIM:To investigate frequency and clinical significance of K-ras mutations in pancreatic diseases and to identify its diagnostic values in pancreatic carcinoma.METHODS:117 ductal lesions were identified in the available sections from pancreatic resection specimens of pancreatic ductal adenocarcinoma, comprising 24 pancreatic ductal adenocarcinoma, 19 peritumoral ductal atypical hyperplasia, 58 peritumoral ductal hyperplasia and 19 normal duct at the tumor free resection margin. 24 ductal lesions were got from 24 chronic pancreatitis. DNA was extracted.Codon 12 K-ras mutations were examined using the two-step polymerase chain reaction (PCR) combined with restriction enzyme digestion,followed by nonradioisotopic single-strand conformation polymorphism (SSCP) analysis and by means of automated DNA sequencing.RESULTS: K-ras mutation rate of the pancreatic carcinoma was 79%(19/24) which was significantly higher than that in the chronic pancreatitis 33%(8/24) (P<0.01). It was also found that K-ras mutation rate was progressively increased from normal duct at the tumor flee resectbn margin, peritumoral ductal hyperplasia, peritumoral ductal atypical hyperplasia to pancreatic ductal adenocardnoma. The mutation pattern of K-ras 12 codon of chronic pancreatitis was GGT→GAT, GGT and CGT,which is identical to that in pancreatic carcinoma.CONCLUSION:K-ras mutation may play a role in the malignant transformation of pancreatic ductal cell. K-ras mutation was not specific enough to diagnose pancreatic carcinoma.展开更多
Objective: To construct the small interfering RNA(siRNA) expression cassettes (SECs) targeting activated K-ras gene sequence and investigate the effects of SECs on K-ras gene in human pancreatic cancer cell line MIAPa...Objective: To construct the small interfering RNA(siRNA) expression cassettes (SECs) targeting activated K-ras gene sequence and investigate the effects of SECs on K-ras gene in human pancreatic cancer cell line MIAPaCa-2. Methods: Three different sites of SECs were constructed by PCR. The K1/siRNA, K2/siRNA and K3/siRNA were located at the site 194, 491 and 327, respectively. They were transfected into MiaPaCa-2 cells by liposome to inhibit the expression of activated K-ras. In the interfering groups of site 194,491, we observed the cytopathic effect of confluent MiaPaCa-2 cells after they were incubated for 48 hours, and detected the apoptosis in cells by FACS, then we tested the alternation of K-ras gene in confluent MiaPaCa-2 cells by RT-PCR,immunofluorescence and western blot, respectively. Results: Introductions of the K1/siRNA and K2/siRNA against K-ras into MiaPaCa-2 cells led to cytopathic effect, slower proliferation and increased apoptosis, while the appearances of control MiaPaCa-2 cells remained well. The number of apoptotic cells increased compared with control cells. RT-PCR,immunofluorescence and western blot showed the effects of inhibited expression of activated K-ras gene by RNA interference in the K1/siRNA and K2/siRNA groups. We also found that the introduction of K3/siRNA had no effect on MiaPaCa-2 cells. Conclusion: K1/siRNA and K2/siRNA can inhibit the expression of activated K-ras and decrease the growth of MiaPaCa-2 cells, while K3/siRNA has no such effect, demonstrating that the suppression of tumor growth by siRNA is sequence-specific. We conclude that K-ras is involved in maintenance of tumor growth of human pancreatic cancer, and SECs against K-ras expression may be a powerful tool to be used therapeutically against human pancreatic cancer.展开更多
Targeted therapy is crucial for advanced colorectal cancer(CRC) positive for genetic drivers. With advances in deep sequencing technology and new targeted drugs, existing standard molecular pathological detection syst...Targeted therapy is crucial for advanced colorectal cancer(CRC) positive for genetic drivers. With advances in deep sequencing technology and new targeted drugs, existing standard molecular pathological detection systems and therapeutic strategies can no longer meet the requirements for careful management of patients with advanced CRC. Thus, rare genetic variations require diagnosis and targeted therapy in clinical practice. Rare gene mutations, amplifications, and rearrangements are usually associated with poor prognosis and poor response to conventional therapy. This review summarizes the clinical diagnosis and treatment of rare genetic variations, in genes including erb-b2 receptor tyrosine kinase 2(ERBB2), B-Raf proto-oncogene, serine/threonine kinase(BRAF), ALK receptor tyrosine kinase/ROS proto-oncogene 1, receptor tyrosine kinase(ALK/ROS1), neurotrophic receptor tyrosine kinases(NTRKs), ret proto-oncogene(RET), fibroblast growth factor receptor 2(FGFR2), and epidermal growth factor receptor(EGFR), to enhance understanding and identify more accurate personalized treatments for patients with rare genetic variations.展开更多
AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE1024...AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE102485 datasets,followed by gene ontology(GO)functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.Potential candidate drugs were screened using the CMap database.Subsequently,a protein-protein interaction(PPI)network was constructed to identify hypoxia-related hub genes.A nomogram was generated using the rms R package,and the correlation of hub genes was analyzed using the Hmisc R package.The clinical significance of hub genes was validated by comparing their expression levels between disease and normal groups and constructing receiver operating characteristic curve(ROC)curves.Finally,a hypoxia-related miRNA-transcription factor(TF)-Hub gene network was constructed using the NetworkAnalyst online tool.RESULTS:Totally 48 hypoxia-related DEGs and screened 10 potential candidate drugs with interaction relationships to upregulated hypoxia-related genes were identified,such as ruxolitinib,meprylcaine,and deferiprone.In addition,8 hub genes were also identified:glycogen phosphorylase muscle associated(PYGM),glyceraldehyde-3-phosphate dehydrogenase spermatogenic(GAPDHS),enolase 3(ENO3),aldolase fructose-bisphosphate C(ALDOC),phosphoglucomutase 2(PGM2),enolase 2(ENO2),phosphoglycerate mutase 2(PGAM2),and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3(PFKFB3).Based on hub gene predictions,the miRNA-TF-Hub gene network revealed complex interactions between 163 miRNAs,77 TFs,and hub genes.The results of ROC showed that the except for GAPDHS,the area under curve(AUC)values of the other 7 hub genes were greater than 0.758,indicating their favorable diagnostic performance.CONCLUSION:PYGM,GAPDHS,ENO3,ALDOC,PGM2,ENO2,PGAM2,and PFKFB3 are hub genes in DR,and hypoxia-related hub genes exhibited favorable diagnostic performance.展开更多
BACKGROUND Validation of the reference gene(RG)stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction(RT-qPCR)data normalisation.Commonly,in an unreliable way,...BACKGROUND Validation of the reference gene(RG)stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction(RT-qPCR)data normalisation.Commonly,in an unreliable way,several studies use genes involved in essential cellular functions[glyceraldehyde-3-phosphate dehydro-genase(GAPDH),18S rRNA,andβ-actin]without paying attention to whether they are suitable for such experimental conditions or the reason for choosing such genes.Furthermore,such studies use only one gene when Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines recom-mend two or more genes.It impacts the credibility of these studies and causes dis-tortions in the gene expression findings.For tissue engineering,the accuracy of gene expression drives the best experimental or therapeutical approaches.We cultivated DPSCs under two conditions:Undifferentiated and osteogenic dif-ferentiation,both for 35 d.We evaluated the gene expression of 10 candidates for RGs[ribosomal protein,large,P0(RPLP0),TATA-binding protein(TBP),GAPDH,actin beta(ACTB),tubulin(TUB),aminolevulinic acid synthase 1(ALAS1),tyro-sine 3-monooxygenase/tryptophan 5-monooxygenase activation protein,zeta(YWHAZ),eukaryotic translational elongation factor 1 alpha(EF1a),succinate dehydrogenase complex,subunit A,flavoprotein(SDHA),and beta-2-micro-globulin(B2M)]every 7 d(1,7,14,21,28,and 35 d)by RT-qPCR.The data were analysed by the four main algorithms,ΔCt method,geNorm,NormFinder,and BestKeeper and ranked by the RefFinder method.We subdivided the samples into eight subgroups.RESULTS All of the data sets from clonogenic and osteogenic samples were analysed using the RefFinder algorithm.The final ranking showed RPLP0/TBP as the two most stable RGs and TUB/B2M as the two least stable RGs.Either theΔCt method or NormFinder analysis showed TBP/RPLP0 as the two most stable genes.However,geNorm analysis showed RPLP0/EF1αin the first place.These algorithms’two least stable RGs were B2M/GAPDH.For BestKeeper,ALAS1 was ranked as the most stable RG,and SDHA as the least stable RG.The pair RPLP0/TBP was detected in most subgroups as the most stable RGs,following the RefFinfer ranking.CONCLUSION For the first time,we show that RPLP0/TBP are the most stable RGs,whereas TUB/B2M are unstable RGs for long-term osteogenic differentiation of human DPSCs in traditional monolayers.展开更多
BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the preval...BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the prevalence of COVID-19 is significantly higher in patients with liver cancer.However,this mechanism of action has not been clarified.Gene sets for COVID-19(GSE180226)and liver cancer(GSE87630)were obtained from the Gene Expression Omnibus database.After identifying the common differentially expressed genes(DEGs)of COVID-19 and liver cancer,functional enrichment analysis,protein-protein interaction network construction and scree-ning and analysis of hub genes were performed.Subsequently,the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed.RESULTS Of 518 common DEGs were obtained by screening for functional analysis.Fifteen hub genes including aurora kinase B,cyclin B2,cell division cycle 20,cell division cycle associated 8,nucleolar and spindle associated protein 1,etc.,were further identified from DEGs using the“cytoHubba”plugin.Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation,cell cycle and other functions,and they may serve as potential molecular markers for COVID-19 and liver cancer.Finally,we selected 10 of the hub genes for in vitro expression validation in liver cancer cells.CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19.These common pathways and key genes may provide new ideas for further mechanistic studies.展开更多
Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet...Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet in many cancer tissues,it is not expressed because of the methylation of its promoter.Additionally,the expression of TIG1 in cancer cells inhibits their growth and invasion,suggesting that TIG1 acts as a tumor suppressor gene.However,in some cancers,poor prognosis is associated with TIG1 expression,indicating its protumor growth characteristics,especially in promoting the invasion of inflammatory breast cancer cells.This review comprehensively summarizes the roles of the TIG1 gene in cancer development and details the mechanisms through which TIG1 regulates cancer development,with the aim of understanding its various roles in cancer development.展开更多
基金This subject is supported by the Fund for Returned Scientists and Scholars,[1999]363.Chinese Ministry of Education.
文摘AIM:To study the genetic alteration in ACF and to define the possibility that ACF may be a very early morphological lesion with molecular changes,and to explore the relationship between ACF and colorectal adenoma even carcinoma. METHODS: DNA from 35 CRC, 15 adenomas, 34 ACF and 10 normal mucus was isolated by means of microdissection. Direct gene sequencing of K-ras gene including codon 12, 13 and 61 as well as the mutation cluster region (MCR) of APC gene was performed. RESULTS: K-ras gene mutation frequency in ACF, adenoma and carcinoma was 17.6% (6/34), 13.3% (2/15), and 14.3% (5/35) respectively, showing no difference (P 】 0.05) in K-ras gene mutation among three pathologic procedures. The K-ras gene mutation in adenoma, carcinoma and 4 ACF restricted in codon 12 (GGT GAT), but the other 2 mutations from ACF located in codon 13 (GGC GAC). K-ras gene mutation was found more frequently in older patients and patients with polypoid cancer. No mutation in codon 61 was found in the three tissue types. Mutation rate of APC gene in adenoma and carcinoma was 22.9% (8/35) and 26.7% (4/15), which was higher than ACF (2.9%) (P 【0.05). APC gene mutation in carcinoma was not correlated with age of patients, location, size and differentiation of tumor. CONCLUSION: ACF might be a very early morphological lesion in the tumorogenesis of colorectal tumor. The morphological feature and gene mutation status was different in ACF and adenoma. ACF is possibly putative microadenoma that might be the precursor of adenoma. In addition, the development of a subgroup of colorectal carcinomas might undergo a way of normal epithelium ACF carcinomas .
基金Natural Science Foundation of Jiangsu Scientific Committee
文摘INTRODUCTIONThe point mutation rate of k-ras gene at codon 12 inpancreatic adenocarcinoma is reported to be as highas 90%,and with no mutations in normalpancreas tissues or other pancreatic disorders.Wehave detected the presence of k-ras gene
文摘Summary: The specific anti-tumor immune response induced by mouse bone marrow dendritic cells (DCs) lransfected with recombinant adenovirus carrying mutant k-ras genes was investighted. DCs were generated from mouse bone marrow in the presence of rmGM-CSF (3.3 ng/mL) and rmIL-4 (1.3 ng/mL) and detected by FACS, and then transfecled with the recombinant adenovirus encoding mutant k ras gene. The efficacy of transfection and T cell stimulating activity of DCs were detected. CTL activity of the mice vaccinated with DCs was observed. The resuhs showed thai DCs had dendritic veiled morphology. BmDCs highly expressed B7-1(80%), B7-2(77%), MHC Ⅱ (70%), CDllc (65%), CD40 (70%) and CD54 (96%) with FACS, and no significant difference in the expression was observed before and after the transfection (P〈0.05). The DCs transfeeled by mutant k-ras gene could significantly stimulate lymphoeytes proliferation as compared with those transfeeted by Ad e or non-modified DCs (P〈0.05). DC vaccine transfected by mutant k-ras gene could induce CTL activity against Lewis lung cancer, but not against B16. The specific eytotoxicity against Lewis lung cancer in Ad-k-ras/12-transdueed DC group was signifieantly higher than those in the control, vector and non transfeeted DCs groups (P〈0.05). It was concluded that special antitumor response could be induced by DCs transfected with recombinant adenovirus carrying mutant k-ras genes.
基金Supported by the Key Technologies R&D Program of Hubei Province, No. 2002AA301C84
文摘AIM: To investigate the functions of promoter hypermethylation of O6-methylguanine-DNA methyltransferase (MGMT) gene in colorectal tumorigenesis and progression.METHODS: The promoter hypermethylation of MGMT gene was detected in 27 sporadic colorectal adenomas,62 sporadic colorectal carcinomas and 20 normal colorectal mucosa tissues by methylation-specific PCR. At the same time, the expression of MGMT protein was carried out in the same samples using immunohistochemistry. Mutantallele-specific amplification was used to detect K-rasG to A point mutation in codon 12.RESULTS: None of the normal colorectal mucosa tissues showed methylated bands. Promoter hypermethylation was detected in 40.7% (11 of 27) of adenomas and 43.5% (27 of 62) of carcinomas. MGMT proteins were expressed in nucleus and cytoplasm of normal colorectal mucosa tissues. Loss of MGMT expression was found in 22.2% (6 of 27) of adenomas and 45.2% (28 of 62) of carcinomas. The difference between them was significant (P = 0.041). In the 6 adenomas and 28 carcinomas losing MGMT expression, 5 and 24 cases presented methylation,respectively (P = 0.027, P<0.001). Thirteen of the 19 colorectal tumors with K-rasG to A point mutation in codon 12 had methylated MGMT(P = 0.011). The frequencies of K-rasG to A point mutation were 35.3% (12 of 34) and 12.7% (7 of 55) in tumors losing MGMT expression and with normal expression, respectively.CONCLUSION: Promoter hypermethylation and loss of expression of MGMT gene were common events in colorectal tumorigenesis, and loss of expression of MGMT occurs more frequently in carcinomas than in adenomas in sporadic patients. Hypermethylation of the CpG island of MGMT gene was associated with loss of MGMT expression and K-ras G to A point mutation in colorectal tumor. The frequency of K-ras G to A point mutation was increased in tumors losing MGMT expression. It suggests that epigenetic inactivation of MGMT plays an important role in colorectal neoplasia.
基金National Natural Science foundation of China, No.39470332
文摘Objective:To study the role of the mutations of p53, APC and K-ras genes in 47 cases of 3 types of intestinal metaplasia (IM) of gastric mucosa. Methods:In 47 cases of IM, exons 5- 8 of p53 and exons 15 of APC were examined with PCR-SSCP and codon 12 of K-ras with PCR-RFLP to detect the existence of any mutations of these structures. Results:Muta- tions of p53, APC and K-ras were found in 29.8% (14/47),6.4% (3/47) and 6.4% (3/47) respectively in our series of patients who consisted of 33 with types I and II and 14 with type III of IM. The mutation rate of p53 was far higher in patients with type III IM (57.1%,8/14) than in those with types I and II IM(18.2%,6/33)(P <0.05). Though the mutation rate of APC and K-ras was also higher in the patients with type III IM than in those with types I and II IM, it was of no statistical significance (P >0.05). In one case of type III IM, mutation of both p53 and K-ras was found. Conclusion: The molecular changes of 3 types of IM are different. The mutation of p53 may be closely related to carcinogenesis in cases of type III IM and it serve as a sign for the early diagnosis of gastric carcinoma.
文摘Objective: To detect the style of K-ras gene point mutation in human pancreatic cancer cell line PANC-1 and decide the bp sequence of Ras target position interfered by RNA. Methods: Three kinds of special sequence primers (SSP) for polymerase chain reaction (PCR) with regard to the mutation styles (OAT, COT and GOT) at codon 12 of K-ras were used to study the human pancreatic cancer cell line PANC-1. The amplification products were studied with polyacrylamine gel electrophoresis to detect the style of point mutation. Results: The style of K-ras gene point mutation at codon 12 was OAT in human pancreatic cancer cell line. Conclusion: PCR-SSP is rapid, convenient and high specific. The results provide a basis for further gene therapy by RNA interference for pancreatic cancer.
基金National Natural Science Foundation of China, No. 30200326
文摘AIM: To further elucidate the possible molecular biological activity of wild type K-ras2 gene by detecting changes in wild type K-ras2 gene-induced gene-expression profiles of colon carcinoma cells using cDNA microarray techniques. METHODS: Total RNA was isolated from peripheral blood of health volunteers. Reverse transcription of RNA and polymerase chain reaction were used to synthesize wild type K-ras2 cDNA. K-ras2 cDNA fragment was cloned into a T easy vector and sequenced. A eukaryotic expression vector pCI-neo-K-ras2 was constructed and transfected to Caco2 cell line using the liposome method. Finally, mRNA was isolated, reverse-transcribed to cDNA from pCI-neo-K-ras2 or pCI-neo blank vector-transfected Caco cells, and analyzed by cDNA microarray assay. RESULTS: Restriction enzyme analysis and DNA sequencing verified that the constructed expression vector was accurate. High-quality RNA was extracted and reverse transcribed to cDNA for microarray assay. Among the 135 genes, the expression was up-regulated in 24 and down-regulated in 121. All these differentially expressed genes were related to cell proliferation, differentiation, apoptosis and signal transduction. CONCLUSION: Differentially expressed genes can be successfully screened from wild type K-ras2-transfected colon carcinoma cells using microarray techniques. The results of our study suggest that wild type K-ras2 is related to the negative regulation of cell proliferation, metabolism and transcriptional control, and provide new clues to the further elucidation of its possible biological activity.
文摘In a total of 83 UN specimens were investigated for proto-oncogene mutations, tumor supressor genes promoter methylation status and c-myc and Ki-67 expression. Point mutations in c-myc were detected in cases with high grade and proliferation index. Mutated K-ras proto-onco- gene profiles were detected in 17 (21%) tumoral spiecemens that examined. Tumor specimens were also showed hypermethylated promoter domain for the SFRP2, MGMT tumor supressor genes. These findings showed the combine effect of mutated c-myc and K-ras oncogene and epigenetic inactivation of tissue specific tumor supressor genes (TS) play a crucial role in tumor progression and recurrence in UN carcinogenesis.
文摘OBJECTIVE To investigate gene mutations of epidermal growth factor receptor (EGFR) and K-RAS (Kirsten rat sarcoma viral oncogene) in Chinese patients with non-small cell lung cancer (NSCLC), and study the correlation with its protein expression and its clinical significance on gefitinib.METHODS Detect the EGFR and K-RAS gene mutations status by gene sequencing and use the method of immunohistochemistry to detect EGFR and K-RAS protein expression.RESULTS The frequency of EGFR mutations was 33%, mainly located in exon 19 and exon 21. The frequency of K-RAS mutations was 5.5%, mainly located in codon 12. There was no case which both had EGFR and K-RAS mutations, suggesting a mutually exclusive relationship between the two. EGFR mutations are more common in adenocarcinomas (particularly those with bronchioloalveolar features), nonsmokers and females. 16% were detected EGFR positive expression and had no correlation with EGFR mutation (P 〉 0.05), but had significant correlation with mutation in exon 19 (P 〈 0.05). The frequency of K-RAS positive expression was 52.5% and had no correlation with K-RAS mutation (P 〉 0.05). Twelve (8 cases were protein-negative) out of 15 gefitinib-treated NSCLC patients with disease control carry EGFR mutations.CONCLUSION EGFR protein expression has some correlation with exon 19 mutations. Combined detection of EGFR and K-RAS gene mutations can help clinicians to choose patients who may benefit from EGFR tyrosine kinase inhibitor (EGFR-TKI) and to predict the response and prognosis of gefitinib.
文摘AIM:To summarize progress in the study of K-ras gene studies in pancreatic cancer and its potential clinical significance in screening test for early detection of pancreatic cancer,and to differentiate pancreatic cancer from chronic pancreatitis in recent decade.METHODS:Literature search (MEDLINE 1986-2003) was performed using the key words K-ras gene, pancreatic cancer, chronic pancreatitis, and diagnosis. Two kind of opposite points of view on the significance of K-ras gene in detection early pancreatic cancer and differentiation pancreatic cancer from chronic pancreatitis were investigated.The presence of a K-ras gene mutation at codon 12 has been seen in 75-100% of pancreatic cancers, and is not rare in patients with chronic pancreatitis, and represents an increased risk of developing pancreatic cancer. However,the significance of the detection of this mutation in specimens obtained by needle aspiration from pure pancreatic juice and from stools for its utilization for the detection of early pancreatic cancer, and differentiation pancreatic cancer from chronic pancreatitis remains controversial.CONCLUSION:The value of K-ras gene mutation for the detection of early pancreatic cancer and differentiation pancreatic cancer from chronic pancreatitis remains uncertains in clinical pratice. Nevertheless, K-ras mutation screening may increase the sensitivity of FNA and ERP cytology and may be useful in identifying pancreatitis patients at high risk for developing cancer, and as a adjunct with cytology to differentiate pancreatic cancer from chronic pancreatitis.
文摘AIM:To study the diagnostic significance of K-ras gene mutations in fecal samples from elderly patients with large intestinal cancer.METHODS: DNA was extracted in the fecal and tissue samples from 23 large intestinal cancer patients, 20 colonic adenomatoid polypus patients and 20 healthy subjects. The K-ras gene mutations at the first and second bases of codon 12 were detected by the allele specific mismatch method.RESULTS: The K-ras gene mutation was 56.52%(13/23) in the large intestinal cancer patients, which was notably higher than that in the normal subjects whose K-ras gene mutation was 5%(1/20) (x^2=12.93, P<0.001). There was no significant difference in comparison with that of colonic adenomatoid polypus patients whose K-ras gene mutation was 30%(6/12)(x^2=3.05, P>0.05). The K-ras gene mutation at the second base of codon 12 was 92.13%(12/13) in the large intestinal cancer patients. There was no significant difference between the detection rate of K-ras gene mutation in the fecal and tissue samples (X^2=9.35, P<0.01).CONCLUSION:Our results indicate that detection of the K-ras gene mutations in fecal samples provides a non-invasive diagnostic method for the elderly large intestinal cancer patients. Its significance in the early diagnosis of large intestinal cancer awaits further studies.
文摘OBJECTIVE: To assess the diagnostic value of endoscopic pancreatic duct brushing in detecting mutation of the K-ras gene at codon 12 in cytologic specimens from patients with pancreatic cancer. METHODS: Thirty-five patients treated at Changhai Hospital, Shanghai between 1999 and 2001 were enrolled. Their cells obtained by pancreatic duct brushing during endoscopic retrograde tholangiopancreatography (ERCP) were suspended with phosphate buffer solution (PBS). DNA of the cells was extracted and mutation of the K-ras gene at codon 12 detected by means of PCR-SSCP. RESULTS: The K-ras gene mutation rate of pancreatic cancer was 70%, which was higher than that of chronic pancreatitis (14%, P<0.05). K-ras gene mutation was not found in patients with pancreatic cystorcarcinoma and duodenum carcinoma. As to the location of pancreatic cancer, no significant difference was observed between the head, the body and tail. The sensitivity, specificity, accuracy of pancreatic duct brushing in detecting pancreatic cancer was 70%, 94%, and 83%, respectively. CONCLUSION: K-ras analysis of pancreatic brushing samples is helpful in the diagnosis of patients with early pancreatic cancer.
基金Supported by Capital Public Health Project Cultivation Program,No.Z111107067311051
文摘AIM: To clarify the molecular mechanism involved in pathogenesis of colorectal cancer as well as clinical significance of genetic analysis of histological samples.
基金Supported by the Technology Committee of Shanghai,NO.994119044
文摘AIM:To investigate frequency and clinical significance of K-ras mutations in pancreatic diseases and to identify its diagnostic values in pancreatic carcinoma.METHODS:117 ductal lesions were identified in the available sections from pancreatic resection specimens of pancreatic ductal adenocarcinoma, comprising 24 pancreatic ductal adenocarcinoma, 19 peritumoral ductal atypical hyperplasia, 58 peritumoral ductal hyperplasia and 19 normal duct at the tumor free resection margin. 24 ductal lesions were got from 24 chronic pancreatitis. DNA was extracted.Codon 12 K-ras mutations were examined using the two-step polymerase chain reaction (PCR) combined with restriction enzyme digestion,followed by nonradioisotopic single-strand conformation polymorphism (SSCP) analysis and by means of automated DNA sequencing.RESULTS: K-ras mutation rate of the pancreatic carcinoma was 79%(19/24) which was significantly higher than that in the chronic pancreatitis 33%(8/24) (P<0.01). It was also found that K-ras mutation rate was progressively increased from normal duct at the tumor flee resectbn margin, peritumoral ductal hyperplasia, peritumoral ductal atypical hyperplasia to pancreatic ductal adenocardnoma. The mutation pattern of K-ras 12 codon of chronic pancreatitis was GGT→GAT, GGT and CGT,which is identical to that in pancreatic carcinoma.CONCLUSION:K-ras mutation may play a role in the malignant transformation of pancreatic ductal cell. K-ras mutation was not specific enough to diagnose pancreatic carcinoma.
文摘Objective: To construct the small interfering RNA(siRNA) expression cassettes (SECs) targeting activated K-ras gene sequence and investigate the effects of SECs on K-ras gene in human pancreatic cancer cell line MIAPaCa-2. Methods: Three different sites of SECs were constructed by PCR. The K1/siRNA, K2/siRNA and K3/siRNA were located at the site 194, 491 and 327, respectively. They were transfected into MiaPaCa-2 cells by liposome to inhibit the expression of activated K-ras. In the interfering groups of site 194,491, we observed the cytopathic effect of confluent MiaPaCa-2 cells after they were incubated for 48 hours, and detected the apoptosis in cells by FACS, then we tested the alternation of K-ras gene in confluent MiaPaCa-2 cells by RT-PCR,immunofluorescence and western blot, respectively. Results: Introductions of the K1/siRNA and K2/siRNA against K-ras into MiaPaCa-2 cells led to cytopathic effect, slower proliferation and increased apoptosis, while the appearances of control MiaPaCa-2 cells remained well. The number of apoptotic cells increased compared with control cells. RT-PCR,immunofluorescence and western blot showed the effects of inhibited expression of activated K-ras gene by RNA interference in the K1/siRNA and K2/siRNA groups. We also found that the introduction of K3/siRNA had no effect on MiaPaCa-2 cells. Conclusion: K1/siRNA and K2/siRNA can inhibit the expression of activated K-ras and decrease the growth of MiaPaCa-2 cells, while K3/siRNA has no such effect, demonstrating that the suppression of tumor growth by siRNA is sequence-specific. We conclude that K-ras is involved in maintenance of tumor growth of human pancreatic cancer, and SECs against K-ras expression may be a powerful tool to be used therapeutically against human pancreatic cancer.
基金supported by the National Natural Science Foundation of China (Grant Nos. 82073197, 82273142, and 82222058)。
文摘Targeted therapy is crucial for advanced colorectal cancer(CRC) positive for genetic drivers. With advances in deep sequencing technology and new targeted drugs, existing standard molecular pathological detection systems and therapeutic strategies can no longer meet the requirements for careful management of patients with advanced CRC. Thus, rare genetic variations require diagnosis and targeted therapy in clinical practice. Rare gene mutations, amplifications, and rearrangements are usually associated with poor prognosis and poor response to conventional therapy. This review summarizes the clinical diagnosis and treatment of rare genetic variations, in genes including erb-b2 receptor tyrosine kinase 2(ERBB2), B-Raf proto-oncogene, serine/threonine kinase(BRAF), ALK receptor tyrosine kinase/ROS proto-oncogene 1, receptor tyrosine kinase(ALK/ROS1), neurotrophic receptor tyrosine kinases(NTRKs), ret proto-oncogene(RET), fibroblast growth factor receptor 2(FGFR2), and epidermal growth factor receptor(EGFR), to enhance understanding and identify more accurate personalized treatments for patients with rare genetic variations.
基金Supported by Scientific Research Project of Xianning Central Hospital in 2022 (No.2022XYB020)Science and Technology Plan Project of Xianning Municipal in 2022 (No.2022SFYF014).
文摘AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE102485 datasets,followed by gene ontology(GO)functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.Potential candidate drugs were screened using the CMap database.Subsequently,a protein-protein interaction(PPI)network was constructed to identify hypoxia-related hub genes.A nomogram was generated using the rms R package,and the correlation of hub genes was analyzed using the Hmisc R package.The clinical significance of hub genes was validated by comparing their expression levels between disease and normal groups and constructing receiver operating characteristic curve(ROC)curves.Finally,a hypoxia-related miRNA-transcription factor(TF)-Hub gene network was constructed using the NetworkAnalyst online tool.RESULTS:Totally 48 hypoxia-related DEGs and screened 10 potential candidate drugs with interaction relationships to upregulated hypoxia-related genes were identified,such as ruxolitinib,meprylcaine,and deferiprone.In addition,8 hub genes were also identified:glycogen phosphorylase muscle associated(PYGM),glyceraldehyde-3-phosphate dehydrogenase spermatogenic(GAPDHS),enolase 3(ENO3),aldolase fructose-bisphosphate C(ALDOC),phosphoglucomutase 2(PGM2),enolase 2(ENO2),phosphoglycerate mutase 2(PGAM2),and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3(PFKFB3).Based on hub gene predictions,the miRNA-TF-Hub gene network revealed complex interactions between 163 miRNAs,77 TFs,and hub genes.The results of ROC showed that the except for GAPDHS,the area under curve(AUC)values of the other 7 hub genes were greater than 0.758,indicating their favorable diagnostic performance.CONCLUSION:PYGM,GAPDHS,ENO3,ALDOC,PGM2,ENO2,PGAM2,and PFKFB3 are hub genes in DR,and hypoxia-related hub genes exhibited favorable diagnostic performance.
基金Supported by São Paulo Research Foundation(FAPESP),No.2010/08918-9 and 2020/11564-6the KBSP Young Investigator Fellowship,No.2011/00204-0+2 种基金the DBF Fellowship,No.2019/27492-7the LMG Fellowship,No.2014/01395-1the CFB Fellowship,No.2014/14278-3.
文摘BACKGROUND Validation of the reference gene(RG)stability during experimental analyses is essential for correct quantitative real-time polymerase chain reaction(RT-qPCR)data normalisation.Commonly,in an unreliable way,several studies use genes involved in essential cellular functions[glyceraldehyde-3-phosphate dehydro-genase(GAPDH),18S rRNA,andβ-actin]without paying attention to whether they are suitable for such experimental conditions or the reason for choosing such genes.Furthermore,such studies use only one gene when Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines recom-mend two or more genes.It impacts the credibility of these studies and causes dis-tortions in the gene expression findings.For tissue engineering,the accuracy of gene expression drives the best experimental or therapeutical approaches.We cultivated DPSCs under two conditions:Undifferentiated and osteogenic dif-ferentiation,both for 35 d.We evaluated the gene expression of 10 candidates for RGs[ribosomal protein,large,P0(RPLP0),TATA-binding protein(TBP),GAPDH,actin beta(ACTB),tubulin(TUB),aminolevulinic acid synthase 1(ALAS1),tyro-sine 3-monooxygenase/tryptophan 5-monooxygenase activation protein,zeta(YWHAZ),eukaryotic translational elongation factor 1 alpha(EF1a),succinate dehydrogenase complex,subunit A,flavoprotein(SDHA),and beta-2-micro-globulin(B2M)]every 7 d(1,7,14,21,28,and 35 d)by RT-qPCR.The data were analysed by the four main algorithms,ΔCt method,geNorm,NormFinder,and BestKeeper and ranked by the RefFinder method.We subdivided the samples into eight subgroups.RESULTS All of the data sets from clonogenic and osteogenic samples were analysed using the RefFinder algorithm.The final ranking showed RPLP0/TBP as the two most stable RGs and TUB/B2M as the two least stable RGs.Either theΔCt method or NormFinder analysis showed TBP/RPLP0 as the two most stable genes.However,geNorm analysis showed RPLP0/EF1αin the first place.These algorithms’two least stable RGs were B2M/GAPDH.For BestKeeper,ALAS1 was ranked as the most stable RG,and SDHA as the least stable RG.The pair RPLP0/TBP was detected in most subgroups as the most stable RGs,following the RefFinfer ranking.CONCLUSION For the first time,we show that RPLP0/TBP are the most stable RGs,whereas TUB/B2M are unstable RGs for long-term osteogenic differentiation of human DPSCs in traditional monolayers.
文摘BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the prevalence of COVID-19 is significantly higher in patients with liver cancer.However,this mechanism of action has not been clarified.Gene sets for COVID-19(GSE180226)and liver cancer(GSE87630)were obtained from the Gene Expression Omnibus database.After identifying the common differentially expressed genes(DEGs)of COVID-19 and liver cancer,functional enrichment analysis,protein-protein interaction network construction and scree-ning and analysis of hub genes were performed.Subsequently,the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed.RESULTS Of 518 common DEGs were obtained by screening for functional analysis.Fifteen hub genes including aurora kinase B,cyclin B2,cell division cycle 20,cell division cycle associated 8,nucleolar and spindle associated protein 1,etc.,were further identified from DEGs using the“cytoHubba”plugin.Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation,cell cycle and other functions,and they may serve as potential molecular markers for COVID-19 and liver cancer.Finally,we selected 10 of the hub genes for in vitro expression validation in liver cancer cells.CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19.These common pathways and key genes may provide new ideas for further mechanistic studies.
基金supported by the Taipei Tzu Chi Hospital through grants from the Buddhist Tzu Chi Medical Foundation under the Numbers TCRD-TPE-111-23(2/3)and TCRD-TPE-113-20,Taipei,Taiwan.
文摘Tazarotene-induced gene 1(TIG1)is induced by a derivative of vitamin A and is known to regulate many important biological processes and control the development of cancer.TIG1 is widely expressed in various tissues;yet in many cancer tissues,it is not expressed because of the methylation of its promoter.Additionally,the expression of TIG1 in cancer cells inhibits their growth and invasion,suggesting that TIG1 acts as a tumor suppressor gene.However,in some cancers,poor prognosis is associated with TIG1 expression,indicating its protumor growth characteristics,especially in promoting the invasion of inflammatory breast cancer cells.This review comprehensively summarizes the roles of the TIG1 gene in cancer development and details the mechanisms through which TIG1 regulates cancer development,with the aim of understanding its various roles in cancer development.