Based on the classical Roe method, we develop an interface capture method according to the general equation of state, and extend the single-fluid Roe method to the two-dimensional (2D) multi-fluid flows, as well as ...Based on the classical Roe method, we develop an interface capture method according to the general equation of state, and extend the single-fluid Roe method to the two-dimensional (2D) multi-fluid flows, as well as construct the continuous Roe matrix for the whole flow field. The interface capture equations and fluid dynamic conservative equations are coupled together and solved by using any high-resolution schemes that usually suit for the single-fluid flows. Some numerical examples are given to illustrate the solution of 1D and 2D multi-fluid Riemann problems.展开更多
In this study,a stable and robust interface-capturing method is developed to resolve inviscid,compressible two-fluid flows with general equation of state(EOS).The governing equations consist of mass conservation equat...In this study,a stable and robust interface-capturing method is developed to resolve inviscid,compressible two-fluid flows with general equation of state(EOS).The governing equations consist of mass conservation equation for each fluid,momentum and energy equations for mixture and an advection equation for volume fraction of one fluid component.Assumption of pressure equilibrium across an interface is used to close the model system.MUSCL-Hancock scheme is extended to construct input states for Riemann problems,whose solutions are calculated using generalized HLLC approximate Riemann solver.Adaptive mesh refinement(AMR)capability is built into hydrodynamic code.The resulting method has some advantages.First,it is very stable and robust,as the advection equation is handled properly.Second,general equation of state can model more materials than simple EOSs such as ideal and stiffened gas EOSs for example.In addition,AMR enables us to properly resolve flow features at disparate scales.Finally,this method is quite simple,time-efficient and easy to implement.展开更多
文摘Based on the classical Roe method, we develop an interface capture method according to the general equation of state, and extend the single-fluid Roe method to the two-dimensional (2D) multi-fluid flows, as well as construct the continuous Roe matrix for the whole flow field. The interface capture equations and fluid dynamic conservative equations are coupled together and solved by using any high-resolution schemes that usually suit for the single-fluid flows. Some numerical examples are given to illustrate the solution of 1D and 2D multi-fluid Riemann problems.
文摘In this study,a stable and robust interface-capturing method is developed to resolve inviscid,compressible two-fluid flows with general equation of state(EOS).The governing equations consist of mass conservation equation for each fluid,momentum and energy equations for mixture and an advection equation for volume fraction of one fluid component.Assumption of pressure equilibrium across an interface is used to close the model system.MUSCL-Hancock scheme is extended to construct input states for Riemann problems,whose solutions are calculated using generalized HLLC approximate Riemann solver.Adaptive mesh refinement(AMR)capability is built into hydrodynamic code.The resulting method has some advantages.First,it is very stable and robust,as the advection equation is handled properly.Second,general equation of state can model more materials than simple EOSs such as ideal and stiffened gas EOSs for example.In addition,AMR enables us to properly resolve flow features at disparate scales.Finally,this method is quite simple,time-efficient and easy to implement.