Generally unitary solution to the system of martix equations over the quaternion field [X mA ns =B ns ,X nn C nt =D nt ] is considered. A necessary and sufficient condition for the existence o...Generally unitary solution to the system of martix equations over the quaternion field [X mA ns =B ns ,X nn C nt =D nt ] is considered. A necessary and sufficient condition for the existence of and the expression for the generally unitary solution of the system are derived.展开更多
The concept of the strongly π-regular general ring (with or without unity) is introduced and some extensions of strongly π-regular general rings are considered. Two equivalent characterizations on strongly π- reg...The concept of the strongly π-regular general ring (with or without unity) is introduced and some extensions of strongly π-regular general rings are considered. Two equivalent characterizations on strongly π- regular general rings are provided. It is shown that I is strongly π-regular if and only if, for each x ∈I, x^n =x^n+1y = zx^n+1 for n ≥ 1 and y, z ∈ I if and only if every element of I is strongly π-regular. It is also proved that every upper triangular matrix general ring over a strongly π-regular general ring is strongly π-regular and the trivial extension of the strongly π-regular general ring is strongly clean.展开更多
In this paper we propose an Ising model on an infinite ladder lattice, which is made of two infinite Ising spin chains with interactions. It is essentially a quasi-one-dimessional Ising model because the length of the...In this paper we propose an Ising model on an infinite ladder lattice, which is made of two infinite Ising spin chains with interactions. It is essentially a quasi-one-dimessional Ising model because the length of the ladder lattice is infinite, while its width is finite. We investigate the phase transition and dynamic behavior of Ising model on this quasi-one-dimessional system. We use the generalized transfer matrix method to investigate the phase transition of the system. It is found that there is no nonzero temperature phase transition in this system. At the same time, we are interested in Glauber dynamics. Based on that, we obtain the time evolution of the local spin magnetization by exactly solving a set of master equations.展开更多
Linear matrix equations are encountered in many systems and control applications.In this paper,we consider the general coupled matrix equations(including the generalized coupled Sylvester matrix equations as a specia...Linear matrix equations are encountered in many systems and control applications.In this paper,we consider the general coupled matrix equations(including the generalized coupled Sylvester matrix equations as a special case)l t=1EstYtFst = Gs,s = 1,2,···,l over the generalized reflexive matrix group(Y1,Y2,···,Yl).We derive an efcient gradient-iterative(GI) algorithm for fnding the generalized reflexive solution group of the general coupled matrix equations.Convergence analysis indicates that the algorithm always converges to the generalized reflexive solution group for any initial generalized reflexive matrix group(Y1(1),Y2(1),···,Yl(1)).Finally,numerical results are presented to test and illustrate the performance of the algorithm in terms of convergence,accuracy as well as the efciency.展开更多
文摘Generally unitary solution to the system of martix equations over the quaternion field [X mA ns =B ns ,X nn C nt =D nt ] is considered. A necessary and sufficient condition for the existence of and the expression for the generally unitary solution of the system are derived.
基金The Foundation for Excellent Doctoral Dissertationof Southeast University (NoYBJJ0507)the National Natural ScienceFoundation of China (No10571026)the Natural Science Foundation ofJiangsu Province (NoBK2005207)
文摘The concept of the strongly π-regular general ring (with or without unity) is introduced and some extensions of strongly π-regular general rings are considered. Two equivalent characterizations on strongly π- regular general rings are provided. It is shown that I is strongly π-regular if and only if, for each x ∈I, x^n =x^n+1y = zx^n+1 for n ≥ 1 and y, z ∈ I if and only if every element of I is strongly π-regular. It is also proved that every upper triangular matrix general ring over a strongly π-regular general ring is strongly π-regular and the trivial extension of the strongly π-regular general ring is strongly clean.
文摘In this paper we propose an Ising model on an infinite ladder lattice, which is made of two infinite Ising spin chains with interactions. It is essentially a quasi-one-dimessional Ising model because the length of the ladder lattice is infinite, while its width is finite. We investigate the phase transition and dynamic behavior of Ising model on this quasi-one-dimessional system. We use the generalized transfer matrix method to investigate the phase transition of the system. It is found that there is no nonzero temperature phase transition in this system. At the same time, we are interested in Glauber dynamics. Based on that, we obtain the time evolution of the local spin magnetization by exactly solving a set of master equations.
文摘Linear matrix equations are encountered in many systems and control applications.In this paper,we consider the general coupled matrix equations(including the generalized coupled Sylvester matrix equations as a special case)l t=1EstYtFst = Gs,s = 1,2,···,l over the generalized reflexive matrix group(Y1,Y2,···,Yl).We derive an efcient gradient-iterative(GI) algorithm for fnding the generalized reflexive solution group of the general coupled matrix equations.Convergence analysis indicates that the algorithm always converges to the generalized reflexive solution group for any initial generalized reflexive matrix group(Y1(1),Y2(1),···,Yl(1)).Finally,numerical results are presented to test and illustrate the performance of the algorithm in terms of convergence,accuracy as well as the efciency.