Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction a...Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further.展开更多
The author will show that neither the Schwarzschild metric nor the metric introduced in 1916 by Schwarzschild describes the data produced by the time delay experiment by Shapiro et al. The author will describe the phy...The author will show that neither the Schwarzschild metric nor the metric introduced in 1916 by Schwarzschild describes the data produced by the time delay experiment by Shapiro et al. The author will describe the physical metric that will explain the time delay experiment data correctly as a solution to Einstein Equation of General Relativity. Other tests of General Relativity, the bending of light, the advancement of perihelia, gravitational red shift and gravitational lensing are satisfied by both the Schwarzschild metric and author’s physical metric.展开更多
The true meaning of the constant in the Robertson-Walker metric is discussed when the scalar factor s the function of time. By strict calculation based on the Riemannian geometry, it is proved that the spatial curvatu...The true meaning of the constant in the Robertson-Walker metric is discussed when the scalar factor s the function of time. By strict calculation based on the Riemannian geometry, it is proved that the spatial curvature of the R-W metric is K=(κ-R2)/R2 . The result indicates that the R-W metric has no constant curvature when R(t)≠0 and κ is not spatial curvature factor. We can only consider κ as an adjustable parameter with κ≠0 in general situations. The result is completely different from the current understanding which is based on the precondition that the scalar factor R(t) is fixed. Due to this result, many conclusions in the current cosmology such as the densities of dark material and dark energy should be re-estimated. In this way, we may overcome the current puzzling situation of cosmology thoroughly.展开更多
This paper describes an easy and teaching way how quantum mechanics (QM) and general relativity (GR) can be brought together. The method consists of formulating Schrödinger’s equation of a free quantum wave of a...This paper describes an easy and teaching way how quantum mechanics (QM) and general relativity (GR) can be brought together. The method consists of formulating Schrödinger’s equation of a free quantum wave of a massive particle in curved space-time of GR using the Schwarzschild metric. The result is a Schrödinger equation of the particle which is automatically subjected to Newtons’s gravitational potential.展开更多
This paper uses an elegant mathematical method to calculate the orbital effects in the axisymmetric field created by the spinning mass with electric charge and a large number of magnetic monopoles. In comparison with ...This paper uses an elegant mathematical method to calculate the orbital effects in the axisymmetric field created by the spinning mass with electric charge and a large number of magnetic monopoles. In comparison with that in the Reissner-Nordstroem (R-N) field, the correction terms caused by the spinning mass decrease the advanced effect as the revolution direction of the test particle coincides with that of the Kerr field, however, the correction terms caused by the spinning charged mass increase the advance effect as the revolution direction of the test particle coincides with that of the Kerr-Newman-Kasnya (KNK) field. Generalizing the effect in the axisymmetric field, it obtains interesting results by discussing the parameters of the celestial body, these parameters provide a feasible experimental verification of the general relativity.展开更多
This is a Unified Field description based on the holographic Time Dilation Cosmology, TDC, model, which is an eternal continuum evolving forward in the forward direction of time, at the speed of light, c, at an invari...This is a Unified Field description based on the holographic Time Dilation Cosmology, TDC, model, which is an eternal continuum evolving forward in the forward direction of time, at the speed of light, c, at an invariant 1 s/s rate of time. This is the Fundamental Direction of Evolution, FDE. There is also an evolution down time dilation gradients, the Gravitational Direction of Evolution, GDE. These evolutions are gravity, which is the evolutionary force in time. Gravitational velocities are compensation for the difference in the rate of time, dRt, in a dilation field, and the dRtis equal to the compensatory velocity’s percentage of c, and is a measure of the force in time inducing the velocity. In applied force induced velocities, the dRt is a measure of the resistance in time to the induced velocity, which might be called “anti-gravity” or “negative gravity”. The two effects keep the continuum uniformly evolving forward at c. It is demonstrated that gravity is already a part of the electromagnetic field equations in way of the dRt element contained in the TDC velocity formula. Einstein’s energy formula is defined as a velocity formula and a modified version is used for charged elementary particle solutions. A time dilation-based derivation of the Lorentz force ties gravity directly to the electromagnetic field proving the unified field of gravity and the EMF. It is noted how we could possibly create gravity drives. This is followed by a discussion of black holes, proving supermassive objects, like massive black hole singularities, are impossible, and that black holes are massless Magnetospheric Eternally Collapsing Objects (MECOs) that are vortices in spacetime. .展开更多
In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Qua...In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Quantum Mechanics. In this paper, we demonstrate that Dirac’s proposed Aether can be described by a lattice of possible events in space-time built in the local Lorentz frame. The idealised case of single velocity state leads to the famous Dirac equation for a plane wave state and is compatible with quantum statistics. On the lattice, possible space-time events are connected by the Dirac spinors which provide the probability of observing an event. The inertial mass of a particle is shown to be equivalent to the density of possible events on the lattice. Variation of the lattice density of events modifies the metric and provides a space-time curvature leading to the Hilbert action associated with general relativity. In classical limit, the perturbation in the density of possible events of the Aether is proportional to the Newtonian gravitational potential.展开更多
Physicists possess an intuitive awareness of Euclidian space and time and Galilean transformation, and are then challenged with Minkowski space-time and Einstein’s curved space-time. Relativistic experiments support ...Physicists possess an intuitive awareness of Euclidian space and time and Galilean transformation, and are then challenged with Minkowski space-time and Einstein’s curved space-time. Relativistic experiments support the “time-dilation” interpretation and others support “curved space-time” interpretation. In this, and related work, we investigate the key issues in terms of the intuitive space-time frame. In particular, we provide alternative approaches to explain “time dilation” and to explain the energy density for gravity systems. We approach the latter problem from an information perspective.展开更多
The energy-momentum distributions of Einstein's simplest static geometrical model for an isotropic and homogeneous universe are evaluated. For this purpose, Einstein, Bergmann-Thomson, Landau-Lifshitz (LL), Moller ...The energy-momentum distributions of Einstein's simplest static geometrical model for an isotropic and homogeneous universe are evaluated. For this purpose, Einstein, Bergmann-Thomson, Landau-Lifshitz (LL), Moller and Papapetrou energy-momentum complexes are used in general relativity. While Einstein and Bergmann-Thomson complexes give exactly the same results, LL and Papapetrou energy-momentum complexes do not provide the same energy densities. The Moller energy-momentum density is found to be zero everywhere in Einstein's universe. Also, several spacetimes are the limiting cases considered here.展开更多
文摘Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further.
文摘The author will show that neither the Schwarzschild metric nor the metric introduced in 1916 by Schwarzschild describes the data produced by the time delay experiment by Shapiro et al. The author will describe the physical metric that will explain the time delay experiment data correctly as a solution to Einstein Equation of General Relativity. Other tests of General Relativity, the bending of light, the advancement of perihelia, gravitational red shift and gravitational lensing are satisfied by both the Schwarzschild metric and author’s physical metric.
文摘The true meaning of the constant in the Robertson-Walker metric is discussed when the scalar factor s the function of time. By strict calculation based on the Riemannian geometry, it is proved that the spatial curvature of the R-W metric is K=(κ-R2)/R2 . The result indicates that the R-W metric has no constant curvature when R(t)≠0 and κ is not spatial curvature factor. We can only consider κ as an adjustable parameter with κ≠0 in general situations. The result is completely different from the current understanding which is based on the precondition that the scalar factor R(t) is fixed. Due to this result, many conclusions in the current cosmology such as the densities of dark material and dark energy should be re-estimated. In this way, we may overcome the current puzzling situation of cosmology thoroughly.
文摘This paper describes an easy and teaching way how quantum mechanics (QM) and general relativity (GR) can be brought together. The method consists of formulating Schrödinger’s equation of a free quantum wave of a massive particle in curved space-time of GR using the Schwarzschild metric. The result is a Schrödinger equation of the particle which is automatically subjected to Newtons’s gravitational potential.
基金supported by the National Basic Research Program of China (Grant No 2003CB716300)Natural Science Foundation of Hunan Province, China (Grant No 06JJ20026)
文摘This paper uses an elegant mathematical method to calculate the orbital effects in the axisymmetric field created by the spinning mass with electric charge and a large number of magnetic monopoles. In comparison with that in the Reissner-Nordstroem (R-N) field, the correction terms caused by the spinning mass decrease the advanced effect as the revolution direction of the test particle coincides with that of the Kerr field, however, the correction terms caused by the spinning charged mass increase the advance effect as the revolution direction of the test particle coincides with that of the Kerr-Newman-Kasnya (KNK) field. Generalizing the effect in the axisymmetric field, it obtains interesting results by discussing the parameters of the celestial body, these parameters provide a feasible experimental verification of the general relativity.
文摘This is a Unified Field description based on the holographic Time Dilation Cosmology, TDC, model, which is an eternal continuum evolving forward in the forward direction of time, at the speed of light, c, at an invariant 1 s/s rate of time. This is the Fundamental Direction of Evolution, FDE. There is also an evolution down time dilation gradients, the Gravitational Direction of Evolution, GDE. These evolutions are gravity, which is the evolutionary force in time. Gravitational velocities are compensation for the difference in the rate of time, dRt, in a dilation field, and the dRtis equal to the compensatory velocity’s percentage of c, and is a measure of the force in time inducing the velocity. In applied force induced velocities, the dRt is a measure of the resistance in time to the induced velocity, which might be called “anti-gravity” or “negative gravity”. The two effects keep the continuum uniformly evolving forward at c. It is demonstrated that gravity is already a part of the electromagnetic field equations in way of the dRt element contained in the TDC velocity formula. Einstein’s energy formula is defined as a velocity formula and a modified version is used for charged elementary particle solutions. A time dilation-based derivation of the Lorentz force ties gravity directly to the electromagnetic field proving the unified field of gravity and the EMF. It is noted how we could possibly create gravity drives. This is followed by a discussion of black holes, proving supermassive objects, like massive black hole singularities, are impossible, and that black holes are massless Magnetospheric Eternally Collapsing Objects (MECOs) that are vortices in spacetime. .
文摘In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Quantum Mechanics. In this paper, we demonstrate that Dirac’s proposed Aether can be described by a lattice of possible events in space-time built in the local Lorentz frame. The idealised case of single velocity state leads to the famous Dirac equation for a plane wave state and is compatible with quantum statistics. On the lattice, possible space-time events are connected by the Dirac spinors which provide the probability of observing an event. The inertial mass of a particle is shown to be equivalent to the density of possible events on the lattice. Variation of the lattice density of events modifies the metric and provides a space-time curvature leading to the Hilbert action associated with general relativity. In classical limit, the perturbation in the density of possible events of the Aether is proportional to the Newtonian gravitational potential.
文摘Physicists possess an intuitive awareness of Euclidian space and time and Galilean transformation, and are then challenged with Minkowski space-time and Einstein’s curved space-time. Relativistic experiments support the “time-dilation” interpretation and others support “curved space-time” interpretation. In this, and related work, we investigate the key issues in terms of the intuitive space-time frame. In particular, we provide alternative approaches to explain “time dilation” and to explain the energy density for gravity systems. We approach the latter problem from an information perspective.
文摘The energy-momentum distributions of Einstein's simplest static geometrical model for an isotropic and homogeneous universe are evaluated. For this purpose, Einstein, Bergmann-Thomson, Landau-Lifshitz (LL), Moller and Papapetrou energy-momentum complexes are used in general relativity. While Einstein and Bergmann-Thomson complexes give exactly the same results, LL and Papapetrou energy-momentum complexes do not provide the same energy densities. The Moller energy-momentum density is found to be zero everywhere in Einstein's universe. Also, several spacetimes are the limiting cases considered here.