Methods for the analysis of heat exchangers with various flow arrangements modeling,design,and performance are essential for heat transfer system modeling and its integration with other energy system models.This paper...Methods for the analysis of heat exchangers with various flow arrangements modeling,design,and performance are essential for heat transfer system modeling and its integration with other energy system models.This paper proposes the use of the linear-transfer law for the heat exchanger design and performance analysis as a function of the thermal resistance related to the ratio of a linear temperature difference to the total heat transfer rate.Additionally,we derived a correction factor that represents the influence of the flow arrangement on the heat transfer performance by the effective thermal conductance,as a function of correction factor,heat transfer coefficient,and surface area.Based on the effective thermal conductance,we propose the hot-end NTU and cold-end NTU for deriving a standardized and general thermal resistance formula for different types of heat exchangers by the combination of the correction factor with linear-transfer law.Moreover,for parallel-flow,cross-flow,and 1-2 Tubular Exchanger Manufacturers Association(TEMA)E shell-and-tube heat exchangers,we derived and obtained alternative correction factor expressions without introducing any temperatures.Two cases about heat exchanger design and performance analysis show that the calculation processes using the correction factor-based general thermal resistance are straightforward without any iteration and the calculation results are accurate.Finally,the experimental validation shows that the general thermal resistance formula is appropriate for analyzing the heat transfer performance.That is,the correction factor-based general thermal resistance formula provides a standardized model for heat exchanger analysis and heat transfer/integrated energy system modeling using the heat current method.展开更多
基金the National Natural Science Foundation of China(Grant Nos.51806119 and 51836004)the Fundamental Research Funds for the Central Universities(2020MS010)。
文摘Methods for the analysis of heat exchangers with various flow arrangements modeling,design,and performance are essential for heat transfer system modeling and its integration with other energy system models.This paper proposes the use of the linear-transfer law for the heat exchanger design and performance analysis as a function of the thermal resistance related to the ratio of a linear temperature difference to the total heat transfer rate.Additionally,we derived a correction factor that represents the influence of the flow arrangement on the heat transfer performance by the effective thermal conductance,as a function of correction factor,heat transfer coefficient,and surface area.Based on the effective thermal conductance,we propose the hot-end NTU and cold-end NTU for deriving a standardized and general thermal resistance formula for different types of heat exchangers by the combination of the correction factor with linear-transfer law.Moreover,for parallel-flow,cross-flow,and 1-2 Tubular Exchanger Manufacturers Association(TEMA)E shell-and-tube heat exchangers,we derived and obtained alternative correction factor expressions without introducing any temperatures.Two cases about heat exchanger design and performance analysis show that the calculation processes using the correction factor-based general thermal resistance are straightforward without any iteration and the calculation results are accurate.Finally,the experimental validation shows that the general thermal resistance formula is appropriate for analyzing the heat transfer performance.That is,the correction factor-based general thermal resistance formula provides a standardized model for heat exchanger analysis and heat transfer/integrated energy system modeling using the heat current method.