This article presents very original and relatively brief or very brief proofs about of two famous problems: 1) Are there any odd perfect numbers? and 2) “Fermat’s last theorem: A new proof of theorem and its general...This article presents very original and relatively brief or very brief proofs about of two famous problems: 1) Are there any odd perfect numbers? and 2) “Fermat’s last theorem: A new proof of theorem and its generalization”. They are achieved with elementary mathematics. This is why these proofs can be easily understood by any mathematician or anyone who knows basic mathematics. Note that, in both problems, proof by contradiction was used as a method of proof. The first of the two problems to date has not been resolved. Its proof is completely original and was not based on the work of other researchers. On the contrary, it was based on a simple observation that all natural divisors of a positive integer appear in pairs. The aim of the first work is to solve one of the unsolved, for many years, problems of the mathematics which belong to the field of number theory. I believe that if the present proof is recognized by the mathematical community, it may signal a different way of solving unsolved problems. For the second problem, it is very important the fact that it is generalized to an arbitrarily large number of variables. This generalization is essentially a new theorem in the field of the number theory. To the classical problem, two solutions are given, which are presented in the chronological order in which they were achieved. <em>Note that the second solution is very short and does not exceed one and a half pages</em>. This leads me to believe that Fermat, as a great mathematician was not lying and that he had probably solved the problem, as he stated in his historic its letter, with a correspondingly brief solution. <em>To win the bet on the question of whether Fermat was telling truth or lying, go immediately to the end of this article before the General Conclusions.</em>展开更多
This article presents a brief and new solution to the problem known as the “Fermat’s Last Theorem”. It is achieved without the use of abstract algebra elements or elements from other fields of modern mathematics of...This article presents a brief and new solution to the problem known as the “Fermat’s Last Theorem”. It is achieved without the use of abstract algebra elements or elements from other fields of modern mathematics of the twentieth century. For this reason it can be easily understood by any mathematician or by anyone who knows basic mathematics. The important thing is that the above “theorem” is generalized. Thus, this generalization is essentially a new theorem in the field of number theory.展开更多
By introducing the notions of L-spaces and L_r-spaces, a complete generalization of Kalton's closed graph theorem is obtained. It points out the class of L_r-spaces is the maximal class of range spaces for the clo...By introducing the notions of L-spaces and L_r-spaces, a complete generalization of Kalton's closed graph theorem is obtained. It points out the class of L_r-spaces is the maximal class of range spaces for the closed graph theorem when the class of domain spaces is the class of Mackey spaces with weakly * sequentially complete dual.Some examples are constructed showing that the class of L_r-spaces is strictly larger than the class of separable B_r-complete spaces.Some properties of L-spaces and L_r-spaces are discussed and the relations between B-complete (resp. B_r-complete) spaces and L-spaces (resp. L_r-spaces) are given.展开更多
By using combinatorics, we give a new proof for the recurrence relations of the characteristic polynomial coefficients, and we further obtain an explicit expression for the generic term of the coefficient sequence, wh...By using combinatorics, we give a new proof for the recurrence relations of the characteristic polynomial coefficients, and we further obtain an explicit expression for the generic term of the coefficient sequence, which yields the trace formulae of the Cayley-Hamilton's theorem with all coefficients explicitly given. This implies a byproduct, a complete expression for the determinant of any finite-dimensional matrix in terms of the traces of its successive powers. And we discuss some of their applications to ehiral perturbation theory and general relativity.展开更多
We offer a new approach to deal with the pointwise convergence of FourierLaplace series on the unit sphere of even-dimensional Euclidean spaces. By using spherical monogenics defined through the generalized Cauchy-Rie...We offer a new approach to deal with the pointwise convergence of FourierLaplace series on the unit sphere of even-dimensional Euclidean spaces. By using spherical monogenics defined through the generalized Cauchy-Riemann operator, we obtain the spherical monogenic expansions of square integrable functions on the unit sphere. Based on the generalization of Fueter's theorem inducing monogenic functions from holomorphic functions in the complex plane and the classical Carleson's theorem, a pointwise convergence theorem on the new expansion is proved. The result is a generalization of Carleson's theorem to the higher dimensional Euclidean spaces. The approach is simpler than those by using special functions, which may have the advantage to induce the singular integral approach for pointwise convergence problems on the spheres.展开更多
The paper generalizes the classical Caristi's fixed point theorem. As an application. the classical Ekeland variational principle is generalized. In addition, it is proved that the generalized Caristi's fixed point ...The paper generalizes the classical Caristi's fixed point theorem. As an application. the classical Ekeland variational principle is generalized. In addition, it is proved that the generalized Caristi's fixed point theorem is equivalent to the generalized Ekeland variational principle.展开更多
In this paper,we generalize the Hall-Higman’s reduction theorem by dropping the restrictive hypothesis(丨G丨,丨H丨)=1 and determine the detailed structure of G.
In this paper,by using Seshadri constants for subschemes,the author establishes a second main theorem of Nevanlinna theory for holomorphic curves intersecting closed subschemes in(weak)subgeneral position.As an applic...In this paper,by using Seshadri constants for subschemes,the author establishes a second main theorem of Nevanlinna theory for holomorphic curves intersecting closed subschemes in(weak)subgeneral position.As an application of his second main theorem,he obtain a Brody hyperbolicity result for the complement of nef effective divisors.He also give the corresponding Schmidt’s subspace theorem and arithmetic hyperbolicity result in Diophantine approximation.展开更多
In this paper, the problem of determining the most general Lie point symmetries group and conservation laws of a well known nonlinear hyperbolic PDE in mathematical physics called the Hunter-Saxton equation (HSE) is...In this paper, the problem of determining the most general Lie point symmetries group and conservation laws of a well known nonlinear hyperbolic PDE in mathematical physics called the Hunter-Saxton equation (HSE) is anaiyzed. By applying the basic Lie symmetry method for the HSE, the classical Lie point symmetry operators are obtained. Also, the algebraic structure of the Lie algebra of symmetries is discussed and an optimal system of one- dimensional subalgebras of the HSE symmetry algebra which creates the preliminary classification of group invariant solutions is constructed. Particularly, the Lie invariants as well as similarity reduced equations corresponding to in- finitesimal symmetries are obtained. Mainly, the conservation laws of the HSE are computed via three different methods including Boyer's generalization of Noether's theorem, first homotopy method and second homotopy method.展开更多
文摘This article presents very original and relatively brief or very brief proofs about of two famous problems: 1) Are there any odd perfect numbers? and 2) “Fermat’s last theorem: A new proof of theorem and its generalization”. They are achieved with elementary mathematics. This is why these proofs can be easily understood by any mathematician or anyone who knows basic mathematics. Note that, in both problems, proof by contradiction was used as a method of proof. The first of the two problems to date has not been resolved. Its proof is completely original and was not based on the work of other researchers. On the contrary, it was based on a simple observation that all natural divisors of a positive integer appear in pairs. The aim of the first work is to solve one of the unsolved, for many years, problems of the mathematics which belong to the field of number theory. I believe that if the present proof is recognized by the mathematical community, it may signal a different way of solving unsolved problems. For the second problem, it is very important the fact that it is generalized to an arbitrarily large number of variables. This generalization is essentially a new theorem in the field of the number theory. To the classical problem, two solutions are given, which are presented in the chronological order in which they were achieved. <em>Note that the second solution is very short and does not exceed one and a half pages</em>. This leads me to believe that Fermat, as a great mathematician was not lying and that he had probably solved the problem, as he stated in his historic its letter, with a correspondingly brief solution. <em>To win the bet on the question of whether Fermat was telling truth or lying, go immediately to the end of this article before the General Conclusions.</em>
文摘This article presents a brief and new solution to the problem known as the “Fermat’s Last Theorem”. It is achieved without the use of abstract algebra elements or elements from other fields of modern mathematics of the twentieth century. For this reason it can be easily understood by any mathematician or by anyone who knows basic mathematics. The important thing is that the above “theorem” is generalized. Thus, this generalization is essentially a new theorem in the field of number theory.
文摘By introducing the notions of L-spaces and L_r-spaces, a complete generalization of Kalton's closed graph theorem is obtained. It points out the class of L_r-spaces is the maximal class of range spaces for the closed graph theorem when the class of domain spaces is the class of Mackey spaces with weakly * sequentially complete dual.Some examples are constructed showing that the class of L_r-spaces is strictly larger than the class of separable B_r-complete spaces.Some properties of L-spaces and L_r-spaces are discussed and the relations between B-complete (resp. B_r-complete) spaces and L-spaces (resp. L_r-spaces) are given.
基金The project supported in part by National Natural Science Foundation of China
文摘By using combinatorics, we give a new proof for the recurrence relations of the characteristic polynomial coefficients, and we further obtain an explicit expression for the generic term of the coefficient sequence, which yields the trace formulae of the Cayley-Hamilton's theorem with all coefficients explicitly given. This implies a byproduct, a complete expression for the determinant of any finite-dimensional matrix in terms of the traces of its successive powers. And we discuss some of their applications to ehiral perturbation theory and general relativity.
基金Sponsored by Research Grant of the University of Macao No. RG024/03-04S/QT/FST
文摘We offer a new approach to deal with the pointwise convergence of FourierLaplace series on the unit sphere of even-dimensional Euclidean spaces. By using spherical monogenics defined through the generalized Cauchy-Riemann operator, we obtain the spherical monogenic expansions of square integrable functions on the unit sphere. Based on the generalization of Fueter's theorem inducing monogenic functions from holomorphic functions in the complex plane and the classical Carleson's theorem, a pointwise convergence theorem on the new expansion is proved. The result is a generalization of Carleson's theorem to the higher dimensional Euclidean spaces. The approach is simpler than those by using special functions, which may have the advantage to induce the singular integral approach for pointwise convergence problems on the spheres.
基金Tianyuan Young Mathematics of China under Grant (10526025)Science Foundation of Nanjing Normal University under Grant(2002SXXXGQ2B20)
文摘The paper generalizes the classical Caristi's fixed point theorem. As an application. the classical Ekeland variational principle is generalized. In addition, it is proved that the generalized Caristi's fixed point theorem is equivalent to the generalized Ekeland variational principle.
基金Supported in part by NSCF and Guangdong STCF.The author deeply thanks Professor Chen Zhongmu for his kind advice and help.
文摘In this paper,we generalize the Hall-Higman’s reduction theorem by dropping the restrictive hypothesis(丨G丨,丨H丨)=1 and determine the detailed structure of G.
基金supported by the National Natural Science Foundation of China(No.11801366)。
文摘In this paper,by using Seshadri constants for subschemes,the author establishes a second main theorem of Nevanlinna theory for holomorphic curves intersecting closed subschemes in(weak)subgeneral position.As an application of his second main theorem,he obtain a Brody hyperbolicity result for the complement of nef effective divisors.He also give the corresponding Schmidt’s subspace theorem and arithmetic hyperbolicity result in Diophantine approximation.
文摘In this paper, the problem of determining the most general Lie point symmetries group and conservation laws of a well known nonlinear hyperbolic PDE in mathematical physics called the Hunter-Saxton equation (HSE) is anaiyzed. By applying the basic Lie symmetry method for the HSE, the classical Lie point symmetry operators are obtained. Also, the algebraic structure of the Lie algebra of symmetries is discussed and an optimal system of one- dimensional subalgebras of the HSE symmetry algebra which creates the preliminary classification of group invariant solutions is constructed. Particularly, the Lie invariants as well as similarity reduced equations corresponding to in- finitesimal symmetries are obtained. Mainly, the conservation laws of the HSE are computed via three different methods including Boyer's generalization of Noether's theorem, first homotopy method and second homotopy method.