Under the framework of a real Hilbert space, we introduce a new iterative method for finding a common element of the set of solution of a general equilibrium problem and the set of fixed points of a nonexpansive semig...Under the framework of a real Hilbert space, we introduce a new iterative method for finding a common element of the set of solution of a general equilibrium problem and the set of fixed points of a nonexpansive semigroup. Moreover, a numerical example is presented. This example grantee the main result of the paper.展开更多
The purpose of this article is to introduce a general split feasibility problems for two families of nonexpansive mappings in Hilbert spaces. We prove that the sequence generated by the proposed new algorithm converge...The purpose of this article is to introduce a general split feasibility problems for two families of nonexpansive mappings in Hilbert spaces. We prove that the sequence generated by the proposed new algorithm converges strongly to a solution of the general split feasibility problem. Our results extend and improve some recent known results.展开更多
Based on the theory of Eider-Bernoulli beam and Winkler assumption for elastic foundation, a mathematical model is presented. By using Fourier transformation for space variable, Laplace transformation for time variabl...Based on the theory of Eider-Bernoulli beam and Winkler assumption for elastic foundation, a mathematical model is presented. By using Fourier transformation for space variable, Laplace transformation for time variable and convolution theorem for their inverse transformations, a general solution for dynamical problem of infinite beam on an elastic foundation is obtained. Finally, the cases of free vibration,impulsive response and moving load are also discussed.展开更多
The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives...The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives of the multiplier mapping and the solution mapping of the proposed algorithm are discussed via the technique of the singular value decomposition of matrix. Based on the estimates, the local convergence results and the rate of convergence of the algorithm are presented when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions. Furthermore, the condition number of the Hessian of the nonlinear Lagrange function with respect to the decision variables is analyzed, which is closely related to efficiency of the algorithm. Finally, the preliminary numericM results for several typical test problems are reported.展开更多
In this paper, some thermoelastic problems in the half space are studied by using the general solutions of the elastic equations. The method presented here is extremely effective for the axisymmetric problems of the h...In this paper, some thermoelastic problems in the half space are studied by using the general solutions of the elastic equations. The method presented here is extremely effective for the axisymmetric problems of the half space as well as the half plane problems.展开更多
The multivalued general mixed implicit equilibrium-like problems are introduced and studied. To solve these problems, a new predictor-corrector iterative algorithm is proposed and analyzed using the auxiliary principl...The multivalued general mixed implicit equilibrium-like problems are introduced and studied. To solve these problems, a new predictor-corrector iterative algorithm is proposed and analyzed using the auxiliary principle technique. The convergence of the suggested algorithm is also proved in weaker conditions.展开更多
This paper proposes a nonmonotonic backtracking trust region algorithm via bilevel linear programming for solving the general multicommodity minimal cost flow problems.Using the duality theory of the linear programmin...This paper proposes a nonmonotonic backtracking trust region algorithm via bilevel linear programming for solving the general multicommodity minimal cost flow problems.Using the duality theory of the linear programming and convex theory,the generalized directional derivative of the general multicommodity minimal cost flow problems is derived.The global convergence and superlinear convergence rate of the proposed algorithm are established under some mild conditions.展开更多
According to the structure feature of the governing equations of spaceaxisymmetric problem in transversely, isotropic piezoelectric material. using the methodof introducing potential .function one by. one, in this pap...According to the structure feature of the governing equations of spaceaxisymmetric problem in transversely, isotropic piezoelectric material. using the methodof introducing potential .function one by. one, in this paper we obtain the so-calledgeneral solution of displacement and eleclric potential function denoied by uniquepoiential.function which satisfies specific partiality equations. As an applying exampleof the general solution, we solve problem of semi-infinile boodt. made of piezoelectricmaterial, on the surface of the semi-infinite body a concentrative .force is applied, andget the analytic .formulations of stress and electric displacement comiponenis. Thegeneral solution provided by this paper can be used as a tool to analyse the mechanical-electrical coupling behavior of piezoelecrtic material which conlains defects such ascavity inclusion. penny-shape crack. and so on. The result of the solved problem canbe used directly to analyse contact problems which take place between twopiezoelectric bodies or piezoelectric body. and elastic body .展开更多
In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, t...In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, this equation may be simplified into the equation given by F.Tdlke(1938)[3]. R.A. Clark(1950 )[4] and V. V.Novozhilov(1951)[5]. When the horizontal radius of the shell of revolution is much larger than the average radius of curvature of meridian curve, this equation in complex variable may be simplified into the equation for slander ring shells. If the ring shell is circular in shape, then this equation can be reduced into the equation in complex variable for slander circular ring shells given by this author (1979)[6]. If the form of elliptic cross-section is near a circle, then the equation of slander ring shell with near-circle ellipitic cross-section may be reduced to the complex variable equation similar in form for circular slander ring shells.展开更多
The prevailing cosmological constant and cold dark matter (ΛCDM) cosmic concordance model accounts for the radial expansion of the universe after the Big Bang. The model appears to be authoritative because it is base...The prevailing cosmological constant and cold dark matter (ΛCDM) cosmic concordance model accounts for the radial expansion of the universe after the Big Bang. The model appears to be authoritative because it is based on the Einstein gravitational field equation. However, a thorough scrutiny of the underlying theory calls into question the suitability of the field equation, which states that the Einstein tensor <strong><em>G</em></strong><span style="white-space:nowrap;"><sub><em><span style="white-space:nowrap;">μv</span></em></sub></span> is a constant multiple of the stress-energy tensor <em> <strong>T</strong></em><span style="white-space:nowrap;"><sub><em><span style="white-space:nowrap;">μv</span></em></sub> </span>when they both are evaluated at the same 4D space-time point: <strong style="white-space:normal;"><em>G</em></strong><sub><em><span style="white-space:nowrap;">μv</span> </em></sub>= 8<span style="white-space:nowrap;">π</span>k<strong style="white-space:normal;"><em>T</em></strong><sub><em><span style="white-space:nowrap;">μv</span></em></sub>, where k is the gravitational constant. Notwithstanding its venerable provenance, this equation is incorrect unless the cosmic pressure is <em>p</em> = 0;but then all that remains of the Einstein equation is the Poisson equation which models the Newtonian gravity field. This shortcoming is not resolved by adding the cosmological constant term to the field equation, <strong style="white-space:normal;"><em>G</em></strong><sub><em><span style="white-space:nowrap;">μv</span> </em></sub>+<span style="white-space:nowrap;">Λ</span> <strong style="white-space:normal;"><em>g</em></strong><sub><em><span style="white-space:nowrap;">μv</span> =<span style="white-space:normal;">8<span style="white-space:nowrap;">π</span></span><span style="white-space:normal;">k</span><strong style="white-space:normal;"><em>T</em></strong><sub style="white-space:normal;"><em><span style="white-space:nowrap;">μv</span></em></sub><span style="white-space:normal;">,</span></em></sub> as in the ΛCDM model, because then <em>p</em> = Λ, so the pressure is a universal constant, not a variable. Numerous studies support the concept of a linearly expanding universe in which gravitational forces and accelerations are negligible because the baryonic mass density of the universe is far below its critical density. We show that such a coasting universe model agrees with SNe Ia luminosity vs. redshift distances just as well or even better than the ΛCDM model, and that it does so without having to invoke dark matter or dark energy. Occam’s razor favors a coasting universe over the ΛCDM model.展开更多
As we now know, there are at least two major difficulties with general rel- ativity (GR). The first one is related to its incompatibility with quantum mechanics, in the absence of a consistent, widely accepted theor...As we now know, there are at least two major difficulties with general rel- ativity (GR). The first one is related to its incompatibility with quantum mechanics, in the absence of a consistent, widely accepted theory that combines the two theo- ries. The second problem is related to the requirement of the dark sectors-inflaton, dark matter and dark energy by the energy-stress tensor, which are needed to explain a variety of astronomical and cosmological observations. Research has indicated that the dark sectors themselves do not have any non-gravitational or laboratory evidence. Moreover, the dark energy poses, in addition, a serious confrontation between funda- mental physics and cosmology. Guided by theoretical and observational evidences, we are led to an idea that the source of gravitation and its manifestation in GR should be modified. The result is in striking agreement with not only the theory, but also the ob- servations, without requiring the dark sectors of the standard approach. Additionally, it provides natural explanations to some unexplained puzzles.展开更多
We propose an unbounded fully homomorphic encryption scheme, i.e. a scheme that allows one to compute on encrypted data for any desired functions without needing to decrypt the data or knowing the decryption keys. Thi...We propose an unbounded fully homomorphic encryption scheme, i.e. a scheme that allows one to compute on encrypted data for any desired functions without needing to decrypt the data or knowing the decryption keys. This is a rational solution to an old problem proposed by Rivest, Adleman, and Dertouzos [1] in 1978, and to some new problems that appeared in Peikert [2] as open questions 10 and open questions 11 a few years ago. Our scheme is completely different from the breakthrough work [3] of Gentry in 2009. Gentry’s bootstrapping technique constructs a fully homomorphic encryption (FHE) scheme from a somewhat homomorphic one that is powerful enough to evaluate its own decryption function. To date, it remains the only known way of obtaining unbounded FHE. Our construction of an unbounded FHE scheme is straightforward and can handle unbounded homomorphic computation on any refreshed ciphertexts without bootstrapping transformation technique.展开更多
In this paper, a new Ky Fan matching theorem is established in noncompact L-convex spaces. As applications, a fixed point theorem and equilibrium existence theorems for systems of general quasiequilibrium problems and...In this paper, a new Ky Fan matching theorem is established in noncompact L-convex spaces. As applications, a fixed point theorem and equilibrium existence theorems for systems of general quasiequilibrium problems and systems of quasiequilibrium problems in noncompact L-convex spaces are obtained.展开更多
In this paper, an SQP type algorithm with a new nonmonotone line search technique for general constrained optimization problems is presented. The new algorithm does not have to solve the second order correction subpro...In this paper, an SQP type algorithm with a new nonmonotone line search technique for general constrained optimization problems is presented. The new algorithm does not have to solve the second order correction subproblems for each iterations, but still can circumvent the so-called Maratos effect. The algorithm's global convergence and superlinear convergent rate have been proved. In addition, we can prove that, after a few iterations, correction subproblems need not be solved, so computation amount of the algorithm will be decreased much more. Numerical experiments show that the new algorithm is effective.展开更多
Superconvergence and recovery a posteriori error estimates of the finite element ap- proximation for general convex optimal control problems are investigated in this paper. We obtain the superconvergence properties of...Superconvergence and recovery a posteriori error estimates of the finite element ap- proximation for general convex optimal control problems are investigated in this paper. We obtain the superconvergence properties of finite element solutions, and by using the superconvergence results we get recovery a posteriori error estimates which are asymptotically exact under some regularity conditions. Some numerical examples are provided to verify the theoretical results.展开更多
This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints.The time ...This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints.The time discretization is based on the backward Euler method.The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions.We derive the superconvergence properties of finite element solutions.By using the superconvergence results,we obtain recovery type a posteriori error estimates.Some numerical examples are presented to verify the theoretical results.展开更多
This paper is concerned with the impact of implementing a thinking skills intervention on pedagogy and the classroom environment, general problems in implementing thinking skills in China and their suggested solutions...This paper is concerned with the impact of implementing a thinking skills intervention on pedagogy and the classroom environment, general problems in implementing thinking skills in China and their suggested solutions. It is conducted by a small scale investigation into a thinking skills class in Year 7 English in England. Discussion is based on existing research in this field and the writer's professional experience. Data is compiled from a teacher interview, a student questionnaire and a video recording of the sample lesson.展开更多
Despite a century-long effort, a proper energy-stress tensor of the gravitational field, could not have been discovered. Furthermore, it has been discovered recently that the standard formulation of the energy-stress ...Despite a century-long effort, a proper energy-stress tensor of the gravitational field, could not have been discovered. Furthermore, it has been discovered recently that the standard formulation of the energy-stress tensor of matter, suffers from various inconsistencies and paradoxes, concluding that the tensor is not consistent with the geometric formulation of gravitation [Astrophys. Space Sci., 2009, 321: 151; Astrophys. Space Sei., 2012, 340: 373]. This perhaps hints that a consistent theory of gravitation should not have any bearing on the energy-stress tensor. It is shown here that the so-called "vacuum" field equations Rik = 0 do not represent an empty spacetime, and the energy, momenta and angular momenta of the gravitational and the matter fields are revealed through the geometry, without including any formulation thereof in the field equations. Though, this novel discovery appears baffling and orthogonal to the usual understanding, is consistent with the observations at all scales, without requiring the Moreover, the resulting theory circumvents the besides explaining some unexplained puzzles. hypothetical dark matter, dark energy or inflation long-standing problems of the standard cosmology展开更多
基金IKIU,for supporting this research(Grant No.751168-91)
文摘Under the framework of a real Hilbert space, we introduce a new iterative method for finding a common element of the set of solution of a general equilibrium problem and the set of fixed points of a nonexpansive semigroup. Moreover, a numerical example is presented. This example grantee the main result of the paper.
基金Supported by the Scientific Research Fund of Sichuan Provincial Department of Science and Technology(2015JY0165,2011JYZ011)the Scientific Research Fund of Sichuan Provincial Education Department(14ZA0271)+2 种基金the Scientific Research Project of Yibin University(2013YY06)the Natural Science Foundation of China Medical University,Taiwanthe National Natural Science Foundation of China(11361070)
文摘The purpose of this article is to introduce a general split feasibility problems for two families of nonexpansive mappings in Hilbert spaces. We prove that the sequence generated by the proposed new algorithm converges strongly to a solution of the general split feasibility problem. Our results extend and improve some recent known results.
文摘Based on the theory of Eider-Bernoulli beam and Winkler assumption for elastic foundation, a mathematical model is presented. By using Fourier transformation for space variable, Laplace transformation for time variable and convolution theorem for their inverse transformations, a general solution for dynamical problem of infinite beam on an elastic foundation is obtained. Finally, the cases of free vibration,impulsive response and moving load are also discussed.
基金Supported by the National Natural Science Foundation of China(11201357,81271513 and 91324201)the Fundamental Research Funds for the Central Universities under project(2014-Ia-001)
文摘The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives of the multiplier mapping and the solution mapping of the proposed algorithm are discussed via the technique of the singular value decomposition of matrix. Based on the estimates, the local convergence results and the rate of convergence of the algorithm are presented when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions. Furthermore, the condition number of the Hessian of the nonlinear Lagrange function with respect to the decision variables is analyzed, which is closely related to efficiency of the algorithm. Finally, the preliminary numericM results for several typical test problems are reported.
文摘In this paper, some thermoelastic problems in the half space are studied by using the general solutions of the elastic equations. The method presented here is extremely effective for the axisymmetric problems of the half space as well as the half plane problems.
基金Project supported by the National Natural Science Foundation of China(No.10771173)
文摘The multivalued general mixed implicit equilibrium-like problems are introduced and studied. To solve these problems, a new predictor-corrector iterative algorithm is proposed and analyzed using the auxiliary principle technique. The convergence of the suggested algorithm is also proved in weaker conditions.
基金the National Natural Science Foundation of China ( 1 0 4 71 0 94) ,the ScienceFoundation of Shanghai Technical Sciences Committee ( 0 2 ZA1 40 70 ) and the Science Foundation ofShanghai Education Committee( 0 2 DK0 6)
文摘This paper proposes a nonmonotonic backtracking trust region algorithm via bilevel linear programming for solving the general multicommodity minimal cost flow problems.Using the duality theory of the linear programming and convex theory,the generalized directional derivative of the general multicommodity minimal cost flow problems is derived.The global convergence and superlinear convergence rate of the proposed algorithm are established under some mild conditions.
文摘According to the structure feature of the governing equations of spaceaxisymmetric problem in transversely, isotropic piezoelectric material. using the methodof introducing potential .function one by. one, in this paper we obtain the so-calledgeneral solution of displacement and eleclric potential function denoied by uniquepoiential.function which satisfies specific partiality equations. As an applying exampleof the general solution, we solve problem of semi-infinile boodt. made of piezoelectricmaterial, on the surface of the semi-infinite body a concentrative .force is applied, andget the analytic .formulations of stress and electric displacement comiponenis. Thegeneral solution provided by this paper can be used as a tool to analyse the mechanical-electrical coupling behavior of piezoelecrtic material which conlains defects such ascavity inclusion. penny-shape crack. and so on. The result of the solved problem canbe used directly to analyse contact problems which take place between twopiezoelectric bodies or piezoelectric body. and elastic body .
文摘In this paper, the equation of axisymmetrical deformation problems for a general shell of revolution is derived in one complex variable under the usual Love-Kirchhoff assumption. In the case of circular ring shells, this equation may be simplified into the equation given by F.Tdlke(1938)[3]. R.A. Clark(1950 )[4] and V. V.Novozhilov(1951)[5]. When the horizontal radius of the shell of revolution is much larger than the average radius of curvature of meridian curve, this equation in complex variable may be simplified into the equation for slander ring shells. If the ring shell is circular in shape, then this equation can be reduced into the equation in complex variable for slander circular ring shells given by this author (1979)[6]. If the form of elliptic cross-section is near a circle, then the equation of slander ring shell with near-circle ellipitic cross-section may be reduced to the complex variable equation similar in form for circular slander ring shells.
文摘The prevailing cosmological constant and cold dark matter (ΛCDM) cosmic concordance model accounts for the radial expansion of the universe after the Big Bang. The model appears to be authoritative because it is based on the Einstein gravitational field equation. However, a thorough scrutiny of the underlying theory calls into question the suitability of the field equation, which states that the Einstein tensor <strong><em>G</em></strong><span style="white-space:nowrap;"><sub><em><span style="white-space:nowrap;">μv</span></em></sub></span> is a constant multiple of the stress-energy tensor <em> <strong>T</strong></em><span style="white-space:nowrap;"><sub><em><span style="white-space:nowrap;">μv</span></em></sub> </span>when they both are evaluated at the same 4D space-time point: <strong style="white-space:normal;"><em>G</em></strong><sub><em><span style="white-space:nowrap;">μv</span> </em></sub>= 8<span style="white-space:nowrap;">π</span>k<strong style="white-space:normal;"><em>T</em></strong><sub><em><span style="white-space:nowrap;">μv</span></em></sub>, where k is the gravitational constant. Notwithstanding its venerable provenance, this equation is incorrect unless the cosmic pressure is <em>p</em> = 0;but then all that remains of the Einstein equation is the Poisson equation which models the Newtonian gravity field. This shortcoming is not resolved by adding the cosmological constant term to the field equation, <strong style="white-space:normal;"><em>G</em></strong><sub><em><span style="white-space:nowrap;">μv</span> </em></sub>+<span style="white-space:nowrap;">Λ</span> <strong style="white-space:normal;"><em>g</em></strong><sub><em><span style="white-space:nowrap;">μv</span> =<span style="white-space:normal;">8<span style="white-space:nowrap;">π</span></span><span style="white-space:normal;">k</span><strong style="white-space:normal;"><em>T</em></strong><sub style="white-space:normal;"><em><span style="white-space:nowrap;">μv</span></em></sub><span style="white-space:normal;">,</span></em></sub> as in the ΛCDM model, because then <em>p</em> = Λ, so the pressure is a universal constant, not a variable. Numerous studies support the concept of a linearly expanding universe in which gravitational forces and accelerations are negligible because the baryonic mass density of the universe is far below its critical density. We show that such a coasting universe model agrees with SNe Ia luminosity vs. redshift distances just as well or even better than the ΛCDM model, and that it does so without having to invoke dark matter or dark energy. Occam’s razor favors a coasting universe over the ΛCDM model.
基金Expanded version(with new findings added) of the essay (arXiv:1206.2795) awarded ‘Honorable Mention’ of the year 2012 by the Gravity Research Foundation
文摘As we now know, there are at least two major difficulties with general rel- ativity (GR). The first one is related to its incompatibility with quantum mechanics, in the absence of a consistent, widely accepted theory that combines the two theo- ries. The second problem is related to the requirement of the dark sectors-inflaton, dark matter and dark energy by the energy-stress tensor, which are needed to explain a variety of astronomical and cosmological observations. Research has indicated that the dark sectors themselves do not have any non-gravitational or laboratory evidence. Moreover, the dark energy poses, in addition, a serious confrontation between funda- mental physics and cosmology. Guided by theoretical and observational evidences, we are led to an idea that the source of gravitation and its manifestation in GR should be modified. The result is in striking agreement with not only the theory, but also the ob- servations, without requiring the dark sectors of the standard approach. Additionally, it provides natural explanations to some unexplained puzzles.
文摘We propose an unbounded fully homomorphic encryption scheme, i.e. a scheme that allows one to compute on encrypted data for any desired functions without needing to decrypt the data or knowing the decryption keys. This is a rational solution to an old problem proposed by Rivest, Adleman, and Dertouzos [1] in 1978, and to some new problems that appeared in Peikert [2] as open questions 10 and open questions 11 a few years ago. Our scheme is completely different from the breakthrough work [3] of Gentry in 2009. Gentry’s bootstrapping technique constructs a fully homomorphic encryption (FHE) scheme from a somewhat homomorphic one that is powerful enough to evaluate its own decryption function. To date, it remains the only known way of obtaining unbounded FHE. Our construction of an unbounded FHE scheme is straightforward and can handle unbounded homomorphic computation on any refreshed ciphertexts without bootstrapping transformation technique.
基金Supported by the Natural Science Foundation of Guizhou Province (Grant No.[2011]2093)the Natural Science Research Foundation of Guizhou Provincial Education Department (Grant No.2008072)
文摘In this paper, a new Ky Fan matching theorem is established in noncompact L-convex spaces. As applications, a fixed point theorem and equilibrium existence theorems for systems of general quasiequilibrium problems and systems of quasiequilibrium problems in noncompact L-convex spaces are obtained.
文摘In this paper, an SQP type algorithm with a new nonmonotone line search technique for general constrained optimization problems is presented. The new algorithm does not have to solve the second order correction subproblems for each iterations, but still can circumvent the so-called Maratos effect. The algorithm's global convergence and superlinear convergent rate have been proved. In addition, we can prove that, after a few iterations, correction subproblems need not be solved, so computation amount of the algorithm will be decreased much more. Numerical experiments show that the new algorithm is effective.
基金supported by Guangdong Provincial"Zhujiang Scholar Award Project"National Science Foundation of China 10671163+2 种基金the National Basic Research Program under the Grant 2005CB321703Scientific Research Fund of Hunan Provincial Education Department 06A069Guangxi Natural Science Foundation 0575029
文摘Superconvergence and recovery a posteriori error estimates of the finite element ap- proximation for general convex optimal control problems are investigated in this paper. We obtain the superconvergence properties of finite element solutions, and by using the superconvergence results we get recovery a posteriori error estimates which are asymptotically exact under some regularity conditions. Some numerical examples are provided to verify the theoretical results.
基金supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China(10971074)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20114407110009)Hunan Provinical Innovation Foundation for Postgraduate(lx2009 B120)。
文摘This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints.The time discretization is based on the backward Euler method.The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions.We derive the superconvergence properties of finite element solutions.By using the superconvergence results,we obtain recovery type a posteriori error estimates.Some numerical examples are presented to verify the theoretical results.
文摘This paper is concerned with the impact of implementing a thinking skills intervention on pedagogy and the classroom environment, general problems in implementing thinking skills in China and their suggested solutions. It is conducted by a small scale investigation into a thinking skills class in Year 7 English in England. Discussion is based on existing research in this field and the writer's professional experience. Data is compiled from a teacher interview, a student questionnaire and a video recording of the sample lesson.
文摘Despite a century-long effort, a proper energy-stress tensor of the gravitational field, could not have been discovered. Furthermore, it has been discovered recently that the standard formulation of the energy-stress tensor of matter, suffers from various inconsistencies and paradoxes, concluding that the tensor is not consistent with the geometric formulation of gravitation [Astrophys. Space Sci., 2009, 321: 151; Astrophys. Space Sei., 2012, 340: 373]. This perhaps hints that a consistent theory of gravitation should not have any bearing on the energy-stress tensor. It is shown here that the so-called "vacuum" field equations Rik = 0 do not represent an empty spacetime, and the energy, momenta and angular momenta of the gravitational and the matter fields are revealed through the geometry, without including any formulation thereof in the field equations. Though, this novel discovery appears baffling and orthogonal to the usual understanding, is consistent with the observations at all scales, without requiring the Moreover, the resulting theory circumvents the besides explaining some unexplained puzzles. hypothetical dark matter, dark energy or inflation long-standing problems of the standard cosmology