The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementa...The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices.展开更多
An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the desig...An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can he adaptively adjusted according to the external disturbances. Based on the Lya- punov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simu- lations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication.展开更多
Spectrum distribution of the second order generalized distributed parameter system was discussed via the functional analysis and operator theory in Hilbert space. The solutions of the problem and the constructive expr...Spectrum distribution of the second order generalized distributed parameter system was discussed via the functional analysis and operator theory in Hilbert space. The solutions of the problem and the constructive expression of the solutions are given by the generalized inverse one of bounded linear operator. This is theoretically important for studying the stabilization and asymptotic stability of the second order generalized distributed parameter system.展开更多
In this paper, the travelling wave solutions for the generalized Burgers-Huxley equation with nonlinear terms of any order are studied. By using the first integral method, which is based on the divisor theorem, some e...In this paper, the travelling wave solutions for the generalized Burgers-Huxley equation with nonlinear terms of any order are studied. By using the first integral method, which is based on the divisor theorem, some exact explicit travelling solitary wave solutions for the above equation are obtained. As a result, some minor errors and some known results in the previousl literature are clarified and improved.展开更多
Based on the stability theory of the fractional order system, the dynamic behaviours of a new fractional order system are investigated theoretically. The lowest order we found to have chaos in the new three-dimensiona...Based on the stability theory of the fractional order system, the dynamic behaviours of a new fractional order system are investigated theoretically. The lowest order we found to have chaos in the new three-dimensional system is 2.46, and the period routes to chaos in the new fractional order system are also found. The effectiveness of our analysis results is further verified by numerical simulations and positive largest Lyapunov exponent. Furthermore, a nonlinear feedback controller is designed to achieve the generalized projective synchronization of the fractional order chaotic system, and its validity is proved by Laplace transformation theory.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
In probability theory, the mixture distribution M has a density function for the collection of random variables and weighted by w<sub>i</sub> ≥ 0 and . These mixed distributions are used in various discip...In probability theory, the mixture distribution M has a density function for the collection of random variables and weighted by w<sub>i</sub> ≥ 0 and . These mixed distributions are used in various disciplines and aim to enrich the collection distribution to more parameters. A more general mixture is derived by Kadri and Halat, by proving the existence of such mixture by w<sub>i</sub> ∈ R, and maintaining . Kadri and Halat provided many examples and applications for such new mixed distributions. In this paper, we introduce a new mixed distribution of the Generalized Erlang distribution, which is derived from the Hypoexponential distribution. We characterize this new distribution by deriving simply closed expressions for the related functions of the probability density function, cumulative distribution function, moment generating function, reliability function, hazard function, and moments.展开更多
This article considers the problem in obtaining the maximum likelihood prediction (point and interval) and Bayesian prediction (point and interval) for a future observation from mixture of two Rayleigh (MTR) distribut...This article considers the problem in obtaining the maximum likelihood prediction (point and interval) and Bayesian prediction (point and interval) for a future observation from mixture of two Rayleigh (MTR) distributions based on generalized order statistics (GOS). We consider one-sample and two-sample prediction schemes using the Markov chain Monte Carlo (MCMC) algorithm. The conjugate prior is used to carry out the Bayesian analysis. The results are specialized to upper record values. Numerical example is presented in the methods proposed in this paper.展开更多
By extending the usual Wigner operator to the s-parameterized one as 1/4π2 integral (dyduexp [iu(q-Q)+iy(p-P)+is/2yu]) from n=- ∞ to ∞ with s beng a,real parameter,we propose a generalized Weyl quantization...By extending the usual Wigner operator to the s-parameterized one as 1/4π2 integral (dyduexp [iu(q-Q)+iy(p-P)+is/2yu]) from n=- ∞ to ∞ with s beng a,real parameter,we propose a generalized Weyl quantization scheme which accompanies a new generalized s-parameterized ordering rule.This rule recovers P-Q ordering,Q-P ordering,and Weyl ordering of operators in s = 1,1,0 respectively.Hence it differs from the Cahill-Glaubers’ ordering rule which unifies normal ordering,antinormal ordering,and Weyl ordering.We also show that in this scheme the s-parameter plays the role of correlation between two quadratures Q and P.The formula that can rearrange a given operator into its new s-parameterized ordering is presented.展开更多
Suppose f is an almost starlike function of order α on the unit disk D. In this paper, we will prove that Фn,β2,γ2,…βn,γn(f)(z)=(f(z1),(f(z1)/z1)^β2(f'(z1))^γ2 z2,…,(f(z1)/z1)^βn(f'(z...Suppose f is an almost starlike function of order α on the unit disk D. In this paper, we will prove that Фn,β2,γ2,…βn,γn(f)(z)=(f(z1),(f(z1)/z1)^β2(f'(z1))^γ2 z2,…,(f(z1)/z1)^βn(f'(z1))^γnzn)1 preserves almost starlikeness of order α on Ωn,p2,…,pn={z=(z1,z2,…,zn)'∈Cn:∑^n j=1|zj|^pj〈1},where 0〈p1≤2,pj≥1,j=2,…,n,are real numbers.展开更多
In this paper,we study the generalized lower order of entire functions defined by Dirichlet series.By constructing the Newton polygon based on Knopp-Kojima’s formula,we obtain a relation between the coefficients of t...In this paper,we study the generalized lower order of entire functions defined by Dirichlet series.By constructing the Newton polygon based on Knopp-Kojima’s formula,we obtain a relation between the coefficients of the Dirichlet series and its generalized lower order.展开更多
In this paper, based on a new more general ansitz, a new algebraic method, named generalized Riccati equation rational expansion method, is devised for constructing travelling wave solutions for nonlinear evolution eq...In this paper, based on a new more general ansitz, a new algebraic method, named generalized Riccati equation rational expansion method, is devised for constructing travelling wave solutions for nonlinear evolution equations with nonlinear terms of any order. Compared with most existing tanh methods for finding travelling wave solutions, the proposed method not only recovers the results by most known algebraic methods, but also provides new and more general solutions. We choose the generalized Burgers-Fisher equation with nonlinear terms of any order to illustrate our method. As a result, we obtain several new kinds of exact solutions for the equation. This approach can also be applied to other nonlinear evolution equations with nonlinear terms of any order.展开更多
The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to th...The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.展开更多
In this article, we propose a generalized exp(-Φ(ξ))-expansion method and successfully implement it to find exact traveling wave solutions to the fifth order standard Sawada-Kotera (SK) equation. The exact traveling...In this article, we propose a generalized exp(-Φ(ξ))-expansion method and successfully implement it to find exact traveling wave solutions to the fifth order standard Sawada-Kotera (SK) equation. The exact traveling wave solutions are established in the form of trigonometric, hyperbolic, exponential and rational functions with some free parameters. It is shown that this method is standard, effective and easily applicable mathematical tool for solving nonlinear partial differential equations arises in the field of mathematical physics and engineering.展开更多
This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete mu...This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete multi-symplectic conservation law to solve the partial differential equations which are derived from the generalized fifth-order KdV equation numerically. The results of the numerical experiments show that this multi-symplectic algorithm is good in accuracy and its long-time numerical behaviour is also perfect.展开更多
The weighted generalized inverses have several important applications in researching the singular matrices,regularization methods for ill-posed problems, optimization problems and statis- tics problems.In this paper w...The weighted generalized inverses have several important applications in researching the singular matrices,regularization methods for ill-posed problems, optimization problems and statis- tics problems.In this paper we further research inverse order rules of weighted generalizde inverse. From the view point of munerical algebra, the different methods we used in inverse order rules pro- vide beneficial means for theory and computing of generalized inverse matrices.展开更多
In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators...In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators.The existence,uniqueness,and stability of the proposed model are discussed.Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models.Comparative studies with generalized fifth-order Runge-Kutta method are given.Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented.We have showcased the efficiency of the proposed method and garnered robust empirical support for our theoretical findings.展开更多
By the method of Knopp-Kojima, the generalized order of Dirichlet series is studied and some interesting relations on the maximum modulus, the maximum term and the coefficients of entire function defined by Dirichlet ...By the method of Knopp-Kojima, the generalized order of Dirichlet series is studied and some interesting relations on the maximum modulus, the maximum term and the coefficients of entire function defined by Dirichlet series of slow growth are obtained, which briefly extends some results of paper [1].展开更多
The main result of this paper is the identification of the sequential order dual [∧(X)]so containing sequentially order continuous linear functionals on the ordered generalized sequence space ∧(X) with its generaliz...The main result of this paper is the identification of the sequential order dual [∧(X)]so containing sequentially order continuous linear functionals on the ordered generalized sequence space ∧(X) with its generalized Kothe dual ∧x(Xso), defined corresponding to the dual pair <X, Xso>.展开更多
In this paper, the synchronization of the fractional-order generalized augmented Lti system is investigated. Based on the predictor--corrector method, we obtain phase portraits, bifurcation diagrams, Lyapunov exponent...In this paper, the synchronization of the fractional-order generalized augmented Lti system is investigated. Based on the predictor--corrector method, we obtain phase portraits, bifurcation diagrams, Lyapunov exponent spectra, and Poincar6 maps of the fractional-order system and find that a four-wing chaotic attractor exists in the system when the system pa- rameters change within certain ranges. Further, by varying the system parameters, rich dynamical behaviors occur in the 2.7-order system. According to the stability theory of a fractional-order linear system, and adopting the linearization by feedback method, we have designed a nonlinear feedback controller in our theoretical analysis to implement the synchro- nization of the drive system with the response system. In addition, the synchronization is also shown by an electronic circuit implementation for the 2.7-order system. The obtained experiment results accord with the theoretical analyses, which further demonstrate the feasibility and effectiveness of the proposed synchronization scheme.展开更多
文摘The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices.
基金Project supported by the Research Foundation of Education Bureau of Hebei Province,China(Grant No.QN2014096)
文摘An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can he adaptively adjusted according to the external disturbances. Based on the Lya- punov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simu- lations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication.
文摘Spectrum distribution of the second order generalized distributed parameter system was discussed via the functional analysis and operator theory in Hilbert space. The solutions of the problem and the constructive expression of the solutions are given by the generalized inverse one of bounded linear operator. This is theoretically important for studying the stabilization and asymptotic stability of the second order generalized distributed parameter system.
基金supported by the Research Foundation of Education Bureau of Hubei Province,China (Grant No Z200612001)the Natural Science Foundation of Yangtze University (Grant No 20061222)
文摘In this paper, the travelling wave solutions for the generalized Burgers-Huxley equation with nonlinear terms of any order are studied. By using the first integral method, which is based on the divisor theorem, some exact explicit travelling solitary wave solutions for the above equation are obtained. As a result, some minor errors and some known results in the previousl literature are clarified and improved.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60573172 and 60973152)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20070141014)the Natural Science Foundation of Liaoning Province,China (Grant No. 20082165)
文摘Based on the stability theory of the fractional order system, the dynamic behaviours of a new fractional order system are investigated theoretically. The lowest order we found to have chaos in the new three-dimensional system is 2.46, and the period routes to chaos in the new fractional order system are also found. The effectiveness of our analysis results is further verified by numerical simulations and positive largest Lyapunov exponent. Furthermore, a nonlinear feedback controller is designed to achieve the generalized projective synchronization of the fractional order chaotic system, and its validity is proved by Laplace transformation theory.
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
文摘In probability theory, the mixture distribution M has a density function for the collection of random variables and weighted by w<sub>i</sub> ≥ 0 and . These mixed distributions are used in various disciplines and aim to enrich the collection distribution to more parameters. A more general mixture is derived by Kadri and Halat, by proving the existence of such mixture by w<sub>i</sub> ∈ R, and maintaining . Kadri and Halat provided many examples and applications for such new mixed distributions. In this paper, we introduce a new mixed distribution of the Generalized Erlang distribution, which is derived from the Hypoexponential distribution. We characterize this new distribution by deriving simply closed expressions for the related functions of the probability density function, cumulative distribution function, moment generating function, reliability function, hazard function, and moments.
文摘This article considers the problem in obtaining the maximum likelihood prediction (point and interval) and Bayesian prediction (point and interval) for a future observation from mixture of two Rayleigh (MTR) distributions based on generalized order statistics (GOS). We consider one-sample and two-sample prediction schemes using the Markov chain Monte Carlo (MCMC) algorithm. The conjugate prior is used to carry out the Bayesian analysis. The results are specialized to upper record values. Numerical example is presented in the methods proposed in this paper.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11175113 and 11147009)the Natural Science Foundation of Shandong Province of China (Grant No. ZR2010AQ027)the Program of Higher Educational Science and Technology of Shandong Province,China (Grant No. J10LA15)
文摘By extending the usual Wigner operator to the s-parameterized one as 1/4π2 integral (dyduexp [iu(q-Q)+iy(p-P)+is/2yu]) from n=- ∞ to ∞ with s beng a,real parameter,we propose a generalized Weyl quantization scheme which accompanies a new generalized s-parameterized ordering rule.This rule recovers P-Q ordering,Q-P ordering,and Weyl ordering of operators in s = 1,1,0 respectively.Hence it differs from the Cahill-Glaubers’ ordering rule which unifies normal ordering,antinormal ordering,and Weyl ordering.We also show that in this scheme the s-parameter plays the role of correlation between two quadratures Q and P.The formula that can rearrange a given operator into its new s-parameterized ordering is presented.
基金Supported by the National Natural Science Foundation of China(10626015,10571044)Supported by the Guangdong Natural Science Foundation(06301315)+1 种基金Supported by the Doctoral Foundation of Zhanjiang Normal University(Z0420)Supported by the Natural Science Foundation of Henan University(XK03YBSX200)
文摘Suppose f is an almost starlike function of order α on the unit disk D. In this paper, we will prove that Фn,β2,γ2,…βn,γn(f)(z)=(f(z1),(f(z1)/z1)^β2(f'(z1))^γ2 z2,…,(f(z1)/z1)^βn(f'(z1))^γnzn)1 preserves almost starlikeness of order α on Ωn,p2,…,pn={z=(z1,z2,…,zn)'∈Cn:∑^n j=1|zj|^pj〈1},where 0〈p1≤2,pj≥1,j=2,…,n,are real numbers.
基金the National Natural Science Foundation of China(11501127)Natural Science Foundation of Guangdong Province(2018A030313954).
文摘In this paper,we study the generalized lower order of entire functions defined by Dirichlet series.By constructing the Newton polygon based on Knopp-Kojima’s formula,we obtain a relation between the coefficients of the Dirichlet series and its generalized lower order.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘In this paper, based on a new more general ansitz, a new algebraic method, named generalized Riccati equation rational expansion method, is devised for constructing travelling wave solutions for nonlinear evolution equations with nonlinear terms of any order. Compared with most existing tanh methods for finding travelling wave solutions, the proposed method not only recovers the results by most known algebraic methods, but also provides new and more general solutions. We choose the generalized Burgers-Fisher equation with nonlinear terms of any order to illustrate our method. As a result, we obtain several new kinds of exact solutions for the equation. This approach can also be applied to other nonlinear evolution equations with nonlinear terms of any order.
基金supported by the Natural Science Foundation of Hebei Province,China (Grant Nos A2008000136 and A2006000128)
文摘The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.
文摘In this article, we propose a generalized exp(-Φ(ξ))-expansion method and successfully implement it to find exact traveling wave solutions to the fifth order standard Sawada-Kotera (SK) equation. The exact traveling wave solutions are established in the form of trigonometric, hyperbolic, exponential and rational functions with some free parameters. It is shown that this method is standard, effective and easily applicable mathematical tool for solving nonlinear partial differential equations arises in the field of mathematical physics and engineering.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572119, 10772147 and 10632030)the Doctoral Program Foundation of Education Ministry of China (Grant No 20070699028)+1 种基金the National Natural Science Foundation of Shaanxi Province of China (Grant No 2006A07)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment
文摘This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete multi-symplectic conservation law to solve the partial differential equations which are derived from the generalized fifth-order KdV equation numerically. The results of the numerical experiments show that this multi-symplectic algorithm is good in accuracy and its long-time numerical behaviour is also perfect.
文摘The weighted generalized inverses have several important applications in researching the singular matrices,regularization methods for ill-posed problems, optimization problems and statis- tics problems.In this paper we further research inverse order rules of weighted generalizde inverse. From the view point of munerical algebra, the different methods we used in inverse order rules pro- vide beneficial means for theory and computing of generalized inverse matrices.
文摘In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators.The existence,uniqueness,and stability of the proposed model are discussed.Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models.Comparative studies with generalized fifth-order Runge-Kutta method are given.Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented.We have showcased the efficiency of the proposed method and garnered robust empirical support for our theoretical findings.
基金supported by the National Natural Science Foundation of China(11101096)the National Natural Science Foundation of China(11201083)+1 种基金the National Natural Science Foundation of China(11301140)the Guangdong Natural Science Foundation(S2012010010376)
文摘By the method of Knopp-Kojima, the generalized order of Dirichlet series is studied and some interesting relations on the maximum modulus, the maximum term and the coefficients of entire function defined by Dirichlet series of slow growth are obtained, which briefly extends some results of paper [1].
文摘The main result of this paper is the identification of the sequential order dual [∧(X)]so containing sequentially order continuous linear functionals on the ordered generalized sequence space ∧(X) with its generalized Kothe dual ∧x(Xso), defined corresponding to the dual pair <X, Xso>.
基金supported by the National Natural Science Foundation of China(Grant No.61174094)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11202148)
文摘In this paper, the synchronization of the fractional-order generalized augmented Lti system is investigated. Based on the predictor--corrector method, we obtain phase portraits, bifurcation diagrams, Lyapunov exponent spectra, and Poincar6 maps of the fractional-order system and find that a four-wing chaotic attractor exists in the system when the system pa- rameters change within certain ranges. Further, by varying the system parameters, rich dynamical behaviors occur in the 2.7-order system. According to the stability theory of a fractional-order linear system, and adopting the linearization by feedback method, we have designed a nonlinear feedback controller in our theoretical analysis to implement the synchro- nization of the drive system with the response system. In addition, the synchronization is also shown by an electronic circuit implementation for the 2.7-order system. The obtained experiment results accord with the theoretical analyses, which further demonstrate the feasibility and effectiveness of the proposed synchronization scheme.