In this paper, we study the structure theory of a class of not-finitely graded Lie alge- bras related to generalized Heisenberg-Virasoro algebras. In particular, the derivation algebras, the automorphism groups and th...In this paper, we study the structure theory of a class of not-finitely graded Lie alge- bras related to generalized Heisenberg-Virasoro algebras. In particular, the derivation algebras, the automorphism groups and the second cohomology groups of these Lie algebras are determined.展开更多
We in this paper derive necessary and sufficient conditions for the system of the periodic discrete-time coupled Sylvester matrix equations AkXk + YkBk = Mk, CkXk+l + YkDk ---- Nk (k = 1, 2) over the quaternion a...We in this paper derive necessary and sufficient conditions for the system of the periodic discrete-time coupled Sylvester matrix equations AkXk + YkBk = Mk, CkXk+l + YkDk ---- Nk (k = 1, 2) over the quaternion algebra to be consistent in terms of ranks and generalized inverses of the coefficient matrices. We also give an expression of the general solution to the system when it is solvable. The findings of this paper generalize some known results in the literature.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.11431010,11371278 and 11271284)Shanghai Municipal Science and Technology Commission(Grant No.12XD1405000)
文摘In this paper, we study the structure theory of a class of not-finitely graded Lie alge- bras related to generalized Heisenberg-Virasoro algebras. In particular, the derivation algebras, the automorphism groups and the second cohomology groups of these Lie algebras are determined.
基金This research was supported by the grant from the National Natural Science Foundation of China (11571220).
文摘We in this paper derive necessary and sufficient conditions for the system of the periodic discrete-time coupled Sylvester matrix equations AkXk + YkBk = Mk, CkXk+l + YkDk ---- Nk (k = 1, 2) over the quaternion algebra to be consistent in terms of ranks and generalized inverses of the coefficient matrices. We also give an expression of the general solution to the system when it is solvable. The findings of this paper generalize some known results in the literature.