针对线性调频(linear frequency modulated,LFM)信号在低信噪比条件下的信号检测问题,提出将广义S变换(generalized S transform,GST)与Hough变换相结合(generalized S transform based on Hough transform,GSTH)信号检测方法。从理论...针对线性调频(linear frequency modulated,LFM)信号在低信噪比条件下的信号检测问题,提出将广义S变换(generalized S transform,GST)与Hough变换相结合(generalized S transform based on Hough transform,GSTH)信号检测方法。从理论层面推导出LFM信号在进行GST后对应的参数特性,论证Hough变换的可行性,推导出GSTH变换后LFM信号与噪声的概率密度分布函数,给出了基于奈曼-皮尔逊准则进行峰值检测时,检测门限的计算方法与确定流程。利用GST时频聚焦性提供良好的直线线性,有易于Hough变换的直线检测,提升变换后主峰峰值并降低副峰高度。通过与WHT(Wigner-Hough transform)、分数阶傅里叶变换与周期WHT算法的仿真对比,定量评估算法的适用性,并与经典算法对比,定性的描述出算法良好的时频聚焦性,凸显GSTH算法在强噪声背景下具有更好的检测精度与适用范围。展开更多
文摘针对线性调频(linear frequency modulated,LFM)信号在低信噪比条件下的信号检测问题,提出将广义S变换(generalized S transform,GST)与Hough变换相结合(generalized S transform based on Hough transform,GSTH)信号检测方法。从理论层面推导出LFM信号在进行GST后对应的参数特性,论证Hough变换的可行性,推导出GSTH变换后LFM信号与噪声的概率密度分布函数,给出了基于奈曼-皮尔逊准则进行峰值检测时,检测门限的计算方法与确定流程。利用GST时频聚焦性提供良好的直线线性,有易于Hough变换的直线检测,提升变换后主峰峰值并降低副峰高度。通过与WHT(Wigner-Hough transform)、分数阶傅里叶变换与周期WHT算法的仿真对比,定量评估算法的适用性,并与经典算法对比,定性的描述出算法良好的时频聚焦性,凸显GSTH算法在强噪声背景下具有更好的检测精度与适用范围。