In this work, the (G,/G)- --expansion method is proposed for constructing more general exact solutions of the (2 + 1)--dimensional Kadomtsev-Petviashvili (KP) equation and its generalized forms. Our work is motivated ...In this work, the (G,/G)- --expansion method is proposed for constructing more general exact solutions of the (2 + 1)--dimensional Kadomtsev-Petviashvili (KP) equation and its generalized forms. Our work is motivated by the fact that the (G,/G)---expansion method provides not only more general forms of solutions but also periodic and solitary waves. If we set the parameters in the obtained wider set of solutions as special values, then some previously known solutions can be recovered. The method appears to be easier and faster by means of a symbolic computation system.展开更多
Through the Hirota bilinear formulation and the symbolic computation software Maple, we construct lump-type solutions for a generalized(3+1)-dimensional Kadomtsev-Petviashvili(KP) equation in three cases of the coeffi...Through the Hirota bilinear formulation and the symbolic computation software Maple, we construct lump-type solutions for a generalized(3+1)-dimensional Kadomtsev-Petviashvili(KP) equation in three cases of the coefficients in the equation. Then the sufficient and necessary conditions to guarantee the analyticity of the resulting lump-type solutions(or the positivity of the corresponding quadratic solutions to the associated bilinear equation) are discussed. To illustrate the generality of the obtained solutions, two concrete lump-type solutions are explicitly presented, and to analyze the dynamic behaviors of the solutions specifically, the three-dimensional plots and contour profiles of these two lump-type solutions with particular choices of the involved free parameters are well displayed.展开更多
With the aid of MATHEMATICA, the direct reduction method,vas extended and applied in 2 + 1-dimensional variable coefficient generalized Kadomtsev-Petviashvili equation( VCGRPE). As a result, several kinds of similarit...With the aid of MATHEMATICA, the direct reduction method,vas extended and applied in 2 + 1-dimensional variable coefficient generalized Kadomtsev-Petviashvili equation( VCGRPE). As a result, several kinds of similarity reductions for VCGKPE are obtained which contain Painleve I, Painleve II and Painleve ni reductions.展开更多
With the aid of the Painlevé analysis, we obtain residual symmetries for a new(3+1)-dimensional generalized Kadomtsev–Petviashvili(gKP) equation. The residual symmetry is localized and the finite transformation ...With the aid of the Painlevé analysis, we obtain residual symmetries for a new(3+1)-dimensional generalized Kadomtsev–Petviashvili(gKP) equation. The residual symmetry is localized and the finite transformation is proposed by introducing suitable auxiliary variables. In addition, the interaction solutions of the(3+1)-dimensional gKP equation are constructed via the consistent Riccati expansion method. Particularly, some analytical soliton-cnoidal interaction solutions are discussed in graphical way.展开更多
By means of the reductive perturbation method, three types of generalized (2+l)-dimensional Kadomtsev- Petviashvili (KP) equations are derived from the baroclinic potential vorticity (BPV) equation, including t...By means of the reductive perturbation method, three types of generalized (2+l)-dimensional Kadomtsev- Petviashvili (KP) equations are derived from the baroclinic potential vorticity (BPV) equation, including the modified KP (mKP) equation, standard KP equation and cylindrical KP (cKP) equation. Then some solutions of generalized cKP and KP equations with certain conditions are given directly and a relationship between the generalized mKP equation and the mKP equation is established by the symmetry group direct method proposed by Lou et al. From the relationship and the solutions of the mKP equation, some solutions of the generalized mKP equation can be obtained. Furthermore, some approximate solutions of the baroclinic potential vorticity equation are derived from three types of generalized KP equations.展开更多
In this work, we are mainly concerned with the existence of stationary solutions for a generalized Kadomtsev-Petviashvili equation in bounded domain of Rn. We utilize variational method and critical point theory to es...In this work, we are mainly concerned with the existence of stationary solutions for a generalized Kadomtsev-Petviashvili equation in bounded domain of Rn. We utilize variational method and critical point theory to establish our main results.展开更多
By using the complete discrimination system for the polynomial method, the classification of single traveling wave solutions to the generalized Kadomtsev-Petviashvili equation without dissipation terms in p=2?is obtai...By using the complete discrimination system for the polynomial method, the classification of single traveling wave solutions to the generalized Kadomtsev-Petviashvili equation without dissipation terms in p=2?is obtained.展开更多
In this paper, a(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP) equation is investigated,which can be used to describe many nonlinear phenomena in fluid dynamics and plasma physics. Based on the generalized...In this paper, a(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP) equation is investigated,which can be used to describe many nonlinear phenomena in fluid dynamics and plasma physics. Based on the generalized Bell's polynomials, we succinctly construct the Hirota's bilinear equation to the GKP equation. By virtue of multidimensional Riemann theta functions, a lucid and straightforward way is presented to explicitly construct multiperiodic Riemann theta function periodic waves(quasi-periodic waves) for the(3+1)-dimensional GKP equation. Interestingly,the one-periodic waves are well-known cnoidal waves, which are considered as one-dimensional models of periodic waves.The two-periodic waves are a direct generalization of one-periodic waves, their surface pattern is two-dimensional that they have two independent spatial periods in two independent horizontal directions. Finally, we analyze asymptotic behavior of the multiperiodic periodic waves, and rigorously present the relationships between the periodic waves and soliton solutions by a limiting procedure.展开更多
In this paper, the(3+1)-dimensional generalized B-type Kadomtsev–Petviashvili equation for water waves is investigated. Through the Hirota method and Kadomtsev–Petviashvili hierarchy reduction, we obtain the first-o...In this paper, the(3+1)-dimensional generalized B-type Kadomtsev–Petviashvili equation for water waves is investigated. Through the Hirota method and Kadomtsev–Petviashvili hierarchy reduction, we obtain the first-order,higher-order, multiple rogue waves and lump solitons based on the solutions in terms of the Gramian. The first-order rogue waves are the line rogue waves which arise from the constant background and then disappear into the constant background again, while the first-order lump solitons propagate stably. Interactions among several first-order rogue waves which are described by the multiple rogue waves are presented. Elastic interactions of several first-order lump solitons are also presented. We find that the higher-order rogue waves and lump solitons can be treated as the superpositions of several first-order ones, while the interaction between the second-order lump solitons is inelastic.展开更多
To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kad...To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kadomtsev–Petviashvili(KP) equation, the(3+1)-dimensional generalized Kadomtsev–Petviashvili(g-KP) equation, and the B-type Kadomtsev–Petviashvili(BKP) equation. Aa a result, we obtain some new resonant multiple wave solutions through the parameterization for wave numbers and frequencies via some linear combinations of exponential traveling waves. Finally, these new resonant type solutions can be displayed in graphs to illustrate the resonant behaviors of multiple wave solutions.展开更多
In this paper, we investigate a(3+1)-dimensional generalized variable-coefficient Kadomtsev–Petviashvili equation, which can describe the nonlinear phenomena in fluids or plasmas. Painlev′e analysis is performed for...In this paper, we investigate a(3+1)-dimensional generalized variable-coefficient Kadomtsev–Petviashvili equation, which can describe the nonlinear phenomena in fluids or plasmas. Painlev′e analysis is performed for us to study the integrability, and we find that the equation is not completely integrable. By virtue of the binary Bell polynomials,bilinear form and soliton solutions are obtained, and B¨acklund transformation in the binary-Bell-polynomial form and bilinear form are derived. Soliton collisions are graphically discussed: the solitons keep their original shapes unchanged after the collision except for the phase shifts. Variable coefficients are seen to affect the motion of solitons: when the variable coefficients are chosen as the constants, solitons keep their directions unchanged during the collision; with the variable coefficients as the functions of the temporal coordinate, the one soliton changes its direction.展开更多
文摘In this work, the (G,/G)- --expansion method is proposed for constructing more general exact solutions of the (2 + 1)--dimensional Kadomtsev-Petviashvili (KP) equation and its generalized forms. Our work is motivated by the fact that the (G,/G)---expansion method provides not only more general forms of solutions but also periodic and solitary waves. If we set the parameters in the obtained wider set of solutions as special values, then some previously known solutions can be recovered. The method appears to be easier and faster by means of a symbolic computation system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11505154,11605156,11775146,and 11975204)the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LQ16A010003 and LY19A050003)+5 种基金the China Scholarship Council(Grant No.201708330479)the Foundation for Doctoral Program of Zhejiang Ocean University(Grant No.Q1511)the Natural Science Foundation(Grant No.DMS-1664561)the Distinguished Professorships by Shanghai University of Electric Power(China)North-West University(South Africa)King Abdulaziz University(Saudi Arabia)
文摘Through the Hirota bilinear formulation and the symbolic computation software Maple, we construct lump-type solutions for a generalized(3+1)-dimensional Kadomtsev-Petviashvili(KP) equation in three cases of the coefficients in the equation. Then the sufficient and necessary conditions to guarantee the analyticity of the resulting lump-type solutions(or the positivity of the corresponding quadratic solutions to the associated bilinear equation) are discussed. To illustrate the generality of the obtained solutions, two concrete lump-type solutions are explicitly presented, and to analyze the dynamic behaviors of the solutions specifically, the three-dimensional plots and contour profiles of these two lump-type solutions with particular choices of the involved free parameters are well displayed.
文摘With the aid of MATHEMATICA, the direct reduction method,vas extended and applied in 2 + 1-dimensional variable coefficient generalized Kadomtsev-Petviashvili equation( VCGRPE). As a result, several kinds of similarity reductions for VCGKPE are obtained which contain Painleve I, Painleve II and Painleve ni reductions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11835011 and 12074343)。
文摘With the aid of the Painlevé analysis, we obtain residual symmetries for a new(3+1)-dimensional generalized Kadomtsev–Petviashvili(gKP) equation. The residual symmetry is localized and the finite transformation is proposed by introducing suitable auxiliary variables. In addition, the interaction solutions of the(3+1)-dimensional gKP equation are constructed via the consistent Riccati expansion method. Particularly, some analytical soliton-cnoidal interaction solutions are discussed in graphical way.
基金supported by National Natural Science Foundation of China (Grant Nos.10735030 and 40775042)Ningbo Natural Science Foundation (Grant No. 2008A610017)+1 种基金National Basic Research Program of China (973 Program) (Grant Nos. 2005CB422301 and 2007CB814800)K.C. Wong Magna Fund in Ningbo University
文摘By means of the reductive perturbation method, three types of generalized (2+l)-dimensional Kadomtsev- Petviashvili (KP) equations are derived from the baroclinic potential vorticity (BPV) equation, including the modified KP (mKP) equation, standard KP equation and cylindrical KP (cKP) equation. Then some solutions of generalized cKP and KP equations with certain conditions are given directly and a relationship between the generalized mKP equation and the mKP equation is established by the symmetry group direct method proposed by Lou et al. From the relationship and the solutions of the mKP equation, some solutions of the generalized mKP equation can be obtained. Furthermore, some approximate solutions of the baroclinic potential vorticity equation are derived from three types of generalized KP equations.
基金The NSF(10971046 and 11371117) of Chinathe Shandong Provincial Natural Science Foundation(ZR2013AM009)+2 种基金GIIFSDU(yzc12063)IIFSDU(2012TS020)the Project of Shandong Province Higher Educational Science and Technology Program(J09LA55)
文摘In this work, we are mainly concerned with the existence of stationary solutions for a generalized Kadomtsev-Petviashvili equation in bounded domain of Rn. We utilize variational method and critical point theory to establish our main results.
文摘By using the complete discrimination system for the polynomial method, the classification of single traveling wave solutions to the generalized Kadomtsev-Petviashvili equation without dissipation terms in p=2?is obtained.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No.2013QNA41Natural Sciences Foundation of China under Grant Nos.11301527 and 11371361the Construction Project of the Key Discipline in Universities for 12th Five-year Plans by Jiangsu Province
文摘In this paper, a(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP) equation is investigated,which can be used to describe many nonlinear phenomena in fluid dynamics and plasma physics. Based on the generalized Bell's polynomials, we succinctly construct the Hirota's bilinear equation to the GKP equation. By virtue of multidimensional Riemann theta functions, a lucid and straightforward way is presented to explicitly construct multiperiodic Riemann theta function periodic waves(quasi-periodic waves) for the(3+1)-dimensional GKP equation. Interestingly,the one-periodic waves are well-known cnoidal waves, which are considered as one-dimensional models of periodic waves.The two-periodic waves are a direct generalization of one-periodic waves, their surface pattern is two-dimensional that they have two independent spatial periods in two independent horizontal directions. Finally, we analyze asymptotic behavior of the multiperiodic periodic waves, and rigorously present the relationships between the periodic waves and soliton solutions by a limiting procedure.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11772017,11272023,and 11471050by the Open Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),China(IPOC:2017ZZ05)by the Fundamental Research Funds for the Central Universities of China under Grant No.2011BUPTYB02
文摘In this paper, the(3+1)-dimensional generalized B-type Kadomtsev–Petviashvili equation for water waves is investigated. Through the Hirota method and Kadomtsev–Petviashvili hierarchy reduction, we obtain the first-order,higher-order, multiple rogue waves and lump solitons based on the solutions in terms of the Gramian. The first-order rogue waves are the line rogue waves which arise from the constant background and then disappear into the constant background again, while the first-order lump solitons propagate stably. Interactions among several first-order rogue waves which are described by the multiple rogue waves are presented. Elastic interactions of several first-order lump solitons are also presented. We find that the higher-order rogue waves and lump solitons can be treated as the superpositions of several first-order ones, while the interaction between the second-order lump solitons is inelastic.
基金Project supported by the Yue-Qi Scholar of the China University of Mining and Technology(Grant No.102504180004)the 333 Project of Jiangsu Province,China(Grant No.BRA2018320)
文摘To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kadomtsev–Petviashvili(KP) equation, the(3+1)-dimensional generalized Kadomtsev–Petviashvili(g-KP) equation, and the B-type Kadomtsev–Petviashvili(BKP) equation. Aa a result, we obtain some new resonant multiple wave solutions through the parameterization for wave numbers and frequencies via some linear combinations of exponential traveling waves. Finally, these new resonant type solutions can be displayed in graphs to illustrate the resonant behaviors of multiple wave solutions.
基金Supported by the National Natural Science Foundation of China under Grant No.11272023the Open Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)under GrantNo.IPOC2013B008the Fundamental Research Funds for the Central Universities of China under Grant No.2011BUPTYB02
文摘In this paper, we investigate a(3+1)-dimensional generalized variable-coefficient Kadomtsev–Petviashvili equation, which can describe the nonlinear phenomena in fluids or plasmas. Painlev′e analysis is performed for us to study the integrability, and we find that the equation is not completely integrable. By virtue of the binary Bell polynomials,bilinear form and soliton solutions are obtained, and B¨acklund transformation in the binary-Bell-polynomial form and bilinear form are derived. Soliton collisions are graphically discussed: the solitons keep their original shapes unchanged after the collision except for the phase shifts. Variable coefficients are seen to affect the motion of solitons: when the variable coefficients are chosen as the constants, solitons keep their directions unchanged during the collision; with the variable coefficients as the functions of the temporal coordinate, the one soliton changes its direction.