In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, ...In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.展开更多
This paper considers the generalized KdV equation with or without natural boundary conditions and provides a parameter region for solitons and solitary waves, and also modifies a result of Zabuskys. The solitary bifur...This paper considers the generalized KdV equation with or without natural boundary conditions and provides a parameter region for solitons and solitary waves, and also modifies a result of Zabuskys. The solitary bifurcation has been discussed.展开更多
In this paper, we present a solution methodology to obtain exact solutions of some nonlinear evolution equation by modifying the homogeneous balance method. Based on the modified homogeneous balance method, several ki...In this paper, we present a solution methodology to obtain exact solutions of some nonlinear evolution equation by modifying the homogeneous balance method. Based on the modified homogeneous balance method, several kinds of exact(new) solutions of the generalized KdV equation are obtained.展开更多
By using the theory of compensated compactness,we prove that there exists a sequence {uδε} converges nearly everywhere to the solution of the initial-value problem of generalized KdV equation with high order perturb...By using the theory of compensated compactness,we prove that there exists a sequence {uδε} converges nearly everywhere to the solution of the initial-value problem of generalized KdV equation with high order perturbation terms,namely we prove the existence of the weak solution.展开更多
This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete mu...This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete multi-symplectic conservation law to solve the partial differential equations which are derived from the generalized fifth-order KdV equation numerically. The results of the numerical experiments show that this multi-symplectic algorithm is good in accuracy and its long-time numerical behaviour is also perfect.展开更多
In this paper, we discuss conditional stability of solitary-wave solutions in the sense of Liapunov for the generalized compound KdV equation and the generalized compound KdV-Burgers equations. Linear stability of the...In this paper, we discuss conditional stability of solitary-wave solutions in the sense of Liapunov for the generalized compound KdV equation and the generalized compound KdV-Burgers equations. Linear stability of the exact solitary-wave solutions is proved for the above two types of equations when the small disturbance of travelling wave form satisfies some special conditions.展开更多
By means of singularity structure analysis, the integrability of a generalized fifth-order KdV equation is investigated. It is proven that this equation passes the Painleve test for integrability only for three distin...By means of singularity structure analysis, the integrability of a generalized fifth-order KdV equation is investigated. It is proven that this equation passes the Painleve test for integrability only for three distinct cases. Moreover, the multi- soliton solutions are presented for this equation under three sets of integrable conditions. Finally, by selecting appropriate parameters, we analyze the evolution of two solitons, which is especially interesting as it may describe the overtaking and the head-on collisions of solitary waves of different shapes and different types.展开更多
Based on the closed connections among the homogeneous balance (HB) method and Clarkson-KruSkal (CK) method, we study the similarity reductions of the generalized variable coefficients 2D KdV equation. In the meant...Based on the closed connections among the homogeneous balance (HB) method and Clarkson-KruSkal (CK) method, we study the similarity reductions of the generalized variable coefficients 2D KdV equation. In the meantime it is shown that this leads to a direct reduction in the form of ordinary differential equation under some integrability conditions between the variable coefficients. Two different cases have been discussed, the search for solutions of those ordinary differential equations yielded many exact travelling and solitonic wave solutions in the form of hyperbolic and trigonometric functions under some constraints between the variable coefficients.展开更多
Based on the method developed by Nucci, the pseudopotentials, Lax pairs and the mngulanty mamtoia equations of the generalized fifth-order KdV equation are derived. By choosing different coefficient, the corresponding...Based on the method developed by Nucci, the pseudopotentials, Lax pairs and the mngulanty mamtoia equations of the generalized fifth-order KdV equation are derived. By choosing different coefficient, the corresponding results and the Backlund transformations can be obtained on three conditioners which include Caudrey-Dodd-Cibbon- Sawada-Kotera equation, the Lax equation and the Kaup-kupershmidt equation.展开更多
This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV)...This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV) equation. This method provides a sequence Of functions which converges to the exact solution of the problem and is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Some examples are given to demonstrate the reliability and convenience of the method and comparisons are made with the exact solutions.展开更多
Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the d...Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.展开更多
The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this articl...The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed.展开更多
The dynamical behaviour of the generalized Korteweg-de Vries (KdV) equation under a periodic perturbation is investigated numerically. The bifurcation and chaos in the system are observed by applying bifurcation dia...The dynamical behaviour of the generalized Korteweg-de Vries (KdV) equation under a periodic perturbation is investigated numerically. The bifurcation and chaos in the system are observed by applying bifurcation diagrams, phase portraits and Poincar'e maps. To characterise the chaotic behaviour of this system, the spectra of the Lyapunov exponent and Lyapunov dimension of the attractor are also employed.展开更多
It is well known that soliton interactions in discrete integrable systems often possess new properties which are different from the continuous integrable systems, e.g., we found that there are such discrete solitons i...It is well known that soliton interactions in discrete integrable systems often possess new properties which are different from the continuous integrable systems, e.g., we found that there are such discrete solitons in a semidiserete integrable system (the time variable is continuous and the space one is discrete) that the shorter solitary waves travel faster than the taller ones. Very recently, this kind of soliton was also observed in a full discrete generalized KdV system (the both of time and space variables are discrete) introduced by Kanki et al. In this paper, for the generalized discrete KdV (gdKdV) equation, we describe its richer structures of one-soliton solutions. The interactions of two-soliton waves to the gdKdV equation are studied. Some new features of the soliton interactions are proposed by rigorous theoretical analysis.展开更多
In this study,the generalized modified variable-coefficient KdV equation with external-force term(gvcmKdV)describing atmospheric blocking located in the mid-high latitudes over ocean is studied for integrability prope...In this study,the generalized modified variable-coefficient KdV equation with external-force term(gvcmKdV)describing atmospheric blocking located in the mid-high latitudes over ocean is studied for integrability property by using consistent Riccati expansion solvability and the necessary integrability conditions between the function coefficients are obtained.Moreover,several new solutions have been constructed for the gvcmKdV.Additionally,the classical direct similarity reduction method is used to re-duce the gvcmKdV to a nonlinear ordinary differential equation.Building on the solutions given in the previous literature for the reduced equation,many novel solitary and periodic wave solutions have been obtained for the gvcmKdV.展开更多
This work deals with the dissipative generalized Korteweg-de Vries (gKdV) equations of the formu t + u 2u x + u xxx-bu xx+ ru = f, t≥0, u(0,x) = u 0(x)∈V = H 2 2π,with periodic boundary conditions. It is proved tha...This work deals with the dissipative generalized Korteweg-de Vries (gKdV) equations of the formu t + u 2u x + u xxx-bu xx+ ru = f, t≥0, u(0,x) = u 0(x)∈V = H 2 2π,with periodic boundary conditions. It is proved that there exists an inertial manifold for the semiflow generated by this equation in space V. Since such a manifold is finite dimensional, positively invariant, and exponentially attracting of all the solution trajectories, the long-time dynamics of the dissipative gKdV equations are determined by a finite number of modes without the soliton phenomena.展开更多
By using a weakly nonlinear and perturbation method, the generalized inhomogeneous Korteweg de Vries (KdV)- Burgers equation is derived, which governs the evolution of the amplitude of Rossby waves under the influen...By using a weakly nonlinear and perturbation method, the generalized inhomogeneous Korteweg de Vries (KdV)- Burgers equation is derived, which governs the evolution of the amplitude of Rossby waves under the influence of dissipation and slowly varying topography with time. The analysis indicates that dissipation and slowly varying topography with time are important factors in causing variation in the mass and energy of solitary waves.展开更多
文摘In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.
基金Research partially supported by Shanghai Development Grant of Education Committee(# 2 0 0 0 A1 0 )
文摘This paper considers the generalized KdV equation with or without natural boundary conditions and provides a parameter region for solitons and solitary waves, and also modifies a result of Zabuskys. The solitary bifurcation has been discussed.
基金Foundation item: Supported by the National Natural Science Foundation of China(10671182) Supported by the Foundation and Frontier Technology Research of Henan(082300410060)
文摘In this paper, we present a solution methodology to obtain exact solutions of some nonlinear evolution equation by modifying the homogeneous balance method. Based on the modified homogeneous balance method, several kinds of exact(new) solutions of the generalized KdV equation are obtained.
基金Supported by the Innovation Talents of Science and Technology of Henan University(2009-HASTIT-007)Supported by the Natural Science Program of Department of Education(2011A110006)
文摘By using the theory of compensated compactness,we prove that there exists a sequence {uδε} converges nearly everywhere to the solution of the initial-value problem of generalized KdV equation with high order perturbation terms,namely we prove the existence of the weak solution.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572119, 10772147 and 10632030)the Doctoral Program Foundation of Education Ministry of China (Grant No 20070699028)+1 种基金the National Natural Science Foundation of Shaanxi Province of China (Grant No 2006A07)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment
文摘This paper considers the multi-symplectic formulations of the generalized fifth-order KdV equation in Hamiltonian space. Recurring to the midpoint rule, it presents an implicit multi-symplectic scheme with discrete multi-symplectic conservation law to solve the partial differential equations which are derived from the generalized fifth-order KdV equation numerically. The results of the numerical experiments show that this multi-symplectic algorithm is good in accuracy and its long-time numerical behaviour is also perfect.
基金The project supported by National Natural Science Foundation of China under Grant No. 10371023 and Shanghai Leading Academic Discipline Project under Grant No. T0502)
文摘In this paper, we discuss conditional stability of solitary-wave solutions in the sense of Liapunov for the generalized compound KdV equation and the generalized compound KdV-Burgers equations. Linear stability of the exact solitary-wave solutions is proved for the above two types of equations when the small disturbance of travelling wave form satisfies some special conditions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11201290 and 71103118)
文摘By means of singularity structure analysis, the integrability of a generalized fifth-order KdV equation is investigated. It is proven that this equation passes the Painleve test for integrability only for three distinct cases. Moreover, the multi- soliton solutions are presented for this equation under three sets of integrable conditions. Finally, by selecting appropriate parameters, we analyze the evolution of two solitons, which is especially interesting as it may describe the overtaking and the head-on collisions of solitary waves of different shapes and different types.
文摘Based on the closed connections among the homogeneous balance (HB) method and Clarkson-KruSkal (CK) method, we study the similarity reductions of the generalized variable coefficients 2D KdV equation. In the meantime it is shown that this leads to a direct reduction in the form of ordinary differential equation under some integrability conditions between the variable coefficients. Two different cases have been discussed, the search for solutions of those ordinary differential equations yielded many exact travelling and solitonic wave solutions in the form of hyperbolic and trigonometric functions under some constraints between the variable coefficients.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10735030,11075055,and 90718041the Shanghai Leading Academic Discipline Project,China under Grant No.B412+1 种基金the Program for Changjiang Scholars,the Innovative Research Team in University of Ministry of Education of China under Grant No.IRT 0734the K.C.Wong Magna Fund in Ningbo University
文摘Based on the method developed by Nucci, the pseudopotentials, Lax pairs and the mngulanty mamtoia equations of the generalized fifth-order KdV equation are derived. By choosing different coefficient, the corresponding results and the Backlund transformations can be obtained on three conditioners which include Caudrey-Dodd-Cibbon- Sawada-Kotera equation, the Lax equation and the Kaup-kupershmidt equation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10771019 and 10826107)
文摘This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV) equation. This method provides a sequence Of functions which converges to the exact solution of the problem and is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Some examples are given to demonstrate the reliability and convenience of the method and comparisons are made with the exact solutions.
基金*Supported by the National Natural Science Foundation of China under Grant No. 60772023, by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001, Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901, and by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006, Chinese Ministry of Education.
文摘Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.
文摘The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10875078)the Natural Science Foundation of Zhejiang Province,China (Grant No. Y7080455)
文摘The dynamical behaviour of the generalized Korteweg-de Vries (KdV) equation under a periodic perturbation is investigated numerically. The bifurcation and chaos in the system are observed by applying bifurcation diagrams, phase portraits and Poincar'e maps. To characterise the chaotic behaviour of this system, the spectra of the Lyapunov exponent and Lyapunov dimension of the attractor are also employed.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11501353,11271254,11428102,and 11671255supported by the Ministry of Economy and Competitiveness of Spain under contracts MTM2012-37070 and MTM2016-80276-P(AEI/FEDER,EU)
文摘It is well known that soliton interactions in discrete integrable systems often possess new properties which are different from the continuous integrable systems, e.g., we found that there are such discrete solitons in a semidiserete integrable system (the time variable is continuous and the space one is discrete) that the shorter solitary waves travel faster than the taller ones. Very recently, this kind of soliton was also observed in a full discrete generalized KdV system (the both of time and space variables are discrete) introduced by Kanki et al. In this paper, for the generalized discrete KdV (gdKdV) equation, we describe its richer structures of one-soliton solutions. The interactions of two-soliton waves to the gdKdV equation are studied. Some new features of the soliton interactions are proposed by rigorous theoretical analysis.
基金The author would like to thank the Deanship of Scientific Re-search,Majmaah University,Saudi Arabia,for funding this work under project No.R-2021-222.
文摘In this study,the generalized modified variable-coefficient KdV equation with external-force term(gvcmKdV)describing atmospheric blocking located in the mid-high latitudes over ocean is studied for integrability property by using consistent Riccati expansion solvability and the necessary integrability conditions between the function coefficients are obtained.Moreover,several new solutions have been constructed for the gvcmKdV.Additionally,the classical direct similarity reduction method is used to re-duce the gvcmKdV to a nonlinear ordinary differential equation.Building on the solutions given in the previous literature for the reduced equation,many novel solitary and periodic wave solutions have been obtained for the gvcmKdV.
文摘This work deals with the dissipative generalized Korteweg-de Vries (gKdV) equations of the formu t + u 2u x + u xxx-bu xx+ ru = f, t≥0, u(0,x) = u 0(x)∈V = H 2 2π,with periodic boundary conditions. It is proved that there exists an inertial manifold for the semiflow generated by this equation in space V. Since such a manifold is finite dimensional, positively invariant, and exponentially attracting of all the solution trajectories, the long-time dynamics of the dissipative gKdV equations are determined by a finite number of modes without the soliton phenomena.
基金supported by the Knowledge Innovation Key Program of the Chinese Academy of Sciences (Grant No. KZCX1-YW-12)the National Key Science Foundation of China (Grant No. 41030855)
文摘By using a weakly nonlinear and perturbation method, the generalized inhomogeneous Korteweg de Vries (KdV)- Burgers equation is derived, which governs the evolution of the amplitude of Rossby waves under the influence of dissipation and slowly varying topography with time. The analysis indicates that dissipation and slowly varying topography with time are important factors in causing variation in the mass and energy of solitary waves.