Let HLB be the category of generalized Long modules, that is, H-modules and B-comodules over Hopf algebras B and H. We describe a new Turaev braided group category over generalized Long module HLB (S(π)) where th...Let HLB be the category of generalized Long modules, that is, H-modules and B-comodules over Hopf algebras B and H. We describe a new Turaev braided group category over generalized Long module HLB (S(π)) where the opposite group S(π) of the semidirect product of the opposite group πopof a group π by π. As an application, we show that this is a Turaev braided group-category HLBfor a quasitriangular Turaev group-coalgebra H and a coquasitriangular Turaev group-algebra B.展开更多
基金The NSF (11101128) of Chinathe NSF (102300410049) of Henan Provincethe NSF (BK2012736) of Jiangsu Province
文摘Let HLB be the category of generalized Long modules, that is, H-modules and B-comodules over Hopf algebras B and H. We describe a new Turaev braided group category over generalized Long module HLB (S(π)) where the opposite group S(π) of the semidirect product of the opposite group πopof a group π by π. As an application, we show that this is a Turaev braided group-category HLBfor a quasitriangular Turaev group-coalgebra H and a coquasitriangular Turaev group-algebra B.