A generalized Lyapunov function was employed to investigate the ultimate bound and positively invariant set of a generalized Lorenz system.We derived an ellipsoidal estimate of the ultimate bound and positively invari...A generalized Lyapunov function was employed to investigate the ultimate bound and positively invariant set of a generalized Lorenz system.We derived an ellipsoidal estimate of the ultimate bound and positively invariant set for the generalized Lorenz system,for all the positive values of system parameters a,b,and c.Our results extend the related result of Li,et al.[Li DM,Lu JA,Wu XQ,et al.,Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Application,2006,323(2):844-653].展开更多
In this paper, we use perturbing families of gernerlized Lyapunov functions to discuss ' the relative stability of ordinary differential systems in terms of two measures and gain some criteria for this stability o...In this paper, we use perturbing families of gernerlized Lyapunov functions to discuss ' the relative stability of ordinary differential systems in terms of two measures and gain some criteria for this stability of asymptotic.'展开更多
By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters ...By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters α=1/29 and 1/29<α<2/29,respectively,which extends some related results of Li,et al. [Li DM,Lu JA,Wu XQ,Chen GR,Estimating the global basin of attraction and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Applications,2006,323(2): 844-853]. The theoretical results obtained in this paper will find wide application in chaos control and synchronization.展开更多
In this paper, the concept of globally exponentially attractive set is proposed and used to consider the ultimate bounds of the family of Lorenz systems with varying parameters. Explicit estimations of the ultimate bo...In this paper, the concept of globally exponentially attractive set is proposed and used to consider the ultimate bounds of the family of Lorenz systems with varying parameters. Explicit estimations of the ultimate bounds are derived. The results presented in this paper contain all the existing results as special cases. In particular, the critical cases, b→ 1^+ and a→0^+, for which the previous methods failed, have been solved using a unified formula.展开更多
文摘A generalized Lyapunov function was employed to investigate the ultimate bound and positively invariant set of a generalized Lorenz system.We derived an ellipsoidal estimate of the ultimate bound and positively invariant set for the generalized Lorenz system,for all the positive values of system parameters a,b,and c.Our results extend the related result of Li,et al.[Li DM,Lu JA,Wu XQ,et al.,Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Application,2006,323(2):844-653].
文摘In this paper, we use perturbing families of gernerlized Lyapunov functions to discuss ' the relative stability of ordinary differential systems in terms of two measures and gain some criteria for this stability of asymptotic.'
文摘By constructing two suitable generalized Lyapunov functions,we derived a generalized ellipsoidal estimate of the globally attractive set and positively invariant set of the unified chaotic system with the parameters α=1/29 and 1/29<α<2/29,respectively,which extends some related results of Li,et al. [Li DM,Lu JA,Wu XQ,Chen GR,Estimating the global basin of attraction and positively invariant set for the Lorenz system and a unified chaotic system,Journal of Mathematical Analysis and Applications,2006,323(2): 844-853]. The theoretical results obtained in this paper will find wide application in chaos control and synchronization.
基金Supported partly by the National Natural Science Foundation of China (Grant Nos. 60474011 and 60274007)the National Natural Science Foun-dation of China for Excellent Youth (Grant No. 60325310)+2 种基金the Guangdong Province Science Foundation for Program of Research Team (Grant No. 04205783)the Natural Science Fund of Guangdong Province, China (Grant No. 05006508)the Natural Science and Engineering Re-search Council of Canada (Grant No. R2686A02)
文摘In this paper, the concept of globally exponentially attractive set is proposed and used to consider the ultimate bounds of the family of Lorenz systems with varying parameters. Explicit estimations of the ultimate bounds are derived. The results presented in this paper contain all the existing results as special cases. In particular, the critical cases, b→ 1^+ and a→0^+, for which the previous methods failed, have been solved using a unified formula.