The perturbations to symmetries and adiabatic invariants for nonconservative systems of generalized classical mechanics axe studied. The exact inwriant in the form of Hojman from a particular Lie symmetry for an undis...The perturbations to symmetries and adiabatic invariants for nonconservative systems of generalized classical mechanics axe studied. The exact inwriant in the form of Hojman from a particular Lie symmetry for an undisturbed system of generalized mechanics is given. Based on the concept of high-order adiabatic invaxiant in generalized mechanics, the perturbation to Lie symmetry for the system under the action of small disturbance is investigated, and a new adiabatic invaxiant for the nonconservative system of generalized classical mechanics is obtained, which can be called the Hojman adiabatic invaxiant. An example is also given to illustrate the application of the results.展开更多
This paper focuses on a new symmetry of Hamiltonian and its conserved quantity for a system of generalized classical mechanics. The differential equations of motion of the system are established. The definition and th...This paper focuses on a new symmetry of Hamiltonian and its conserved quantity for a system of generalized classical mechanics. The differential equations of motion of the system are established. The definition and the criterion of the symmetry of Hamiltonian of the system are given. A conserved quantity directly derived from the symmetry of Hamiltonian of the generalized classical mechanical system is given. Since a Hamilton system is a special case of the generalized classical mechanics, the results above are equally applicable to the Hamilton system. The results of the paper are the generalization of a theorem known for the existing nonsingular equivalent Lagrangian. Finally, two examples are given to illustrate the application of the results.展开更多
In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré Chetaev equations of a generalized classical mechanics under the general infinitesimal transformations of Lie groups is disc...In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré Chetaev equations of a generalized classical mechanics under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced. Finally, an example is given to illustrate the application of the results.展开更多
In this paper, the Noether Lie symmetry and conserved quantities of generalized classical mechanical system are studied. The definition and the criterion of the Noether Lie symmetry for the system under the general in...In this paper, the Noether Lie symmetry and conserved quantities of generalized classical mechanical system are studied. The definition and the criterion of the Noether Lie symmetry for the system under the general infinitesimal transformations of groups are given. The Noether conserved quantity and the Hojman conserved quantity deduced from the Noether Lie symmetry are obtained. An example is given to illustrate the application of the results.展开更多
In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noet...In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noether'sconserved quantity,the new form conserved quantity,and the Hojman's conserved quantity of system are derived fromthem.Finally,an example is given to illustrate the application of the result.展开更多
基金Project supported by the Natural Science Foundation of High Education of Jiangsu Province, China (Grant No 04KJA130135).
文摘The perturbations to symmetries and adiabatic invariants for nonconservative systems of generalized classical mechanics axe studied. The exact inwriant in the form of Hojman from a particular Lie symmetry for an undisturbed system of generalized mechanics is given. Based on the concept of high-order adiabatic invaxiant in generalized mechanics, the perturbation to Lie symmetry for the system under the action of small disturbance is investigated, and a new adiabatic invaxiant for the nonconservative system of generalized classical mechanics is obtained, which can be called the Hojman adiabatic invaxiant. An example is also given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (Grant No. 10972151)
文摘This paper focuses on a new symmetry of Hamiltonian and its conserved quantity for a system of generalized classical mechanics. The differential equations of motion of the system are established. The definition and the criterion of the symmetry of Hamiltonian of the system are given. A conserved quantity directly derived from the symmetry of Hamiltonian of the generalized classical mechanical system is given. Since a Hamilton system is a special case of the generalized classical mechanics, the results above are equally applicable to the Hamilton system. The results of the paper are the generalization of a theorem known for the existing nonsingular equivalent Lagrangian. Finally, two examples are given to illustrate the application of the results.
文摘In the present paper the Lie symmetrical non-Noether conserved quantity of the Poincaré Chetaev equations of a generalized classical mechanics under the general infinitesimal transformations of Lie groups is discussed. First, we establish the determining equations of Lie symmetry of the equations. Second, the Lie symmetrical non-Noether conserved quantity of the equations is deduced. Finally, an example is given to illustrate the application of the results.
文摘In this paper, the Noether Lie symmetry and conserved quantities of generalized classical mechanical system are studied. The definition and the criterion of the Noether Lie symmetry for the system under the general infinitesimal transformations of groups are given. The Noether conserved quantity and the Hojman conserved quantity deduced from the Noether Lie symmetry are obtained. An example is given to illustrate the application of the results.
基金National Natural Science Foundation of China under Grant No.10272034the Doctoral Program Foundation of China
文摘In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noether'sconserved quantity,the new form conserved quantity,and the Hojman's conserved quantity of system are derived fromthem.Finally,an example is given to illustrate the application of the result.