The principle and method of flexible multibody system dynamics is presented. The dynamic equation have been developed by means of Huston's method based on Kane's equation. In which the flexible members with g...The principle and method of flexible multibody system dynamics is presented. The dynamic equation have been developed by means of Huston's method based on Kane's equation. In which the flexible members with general cross-section characters were divided into finite segment models under the assumption of small strain. In order to decrease the degrees of freedom of the system and increase the efficiency of numerical calculation. the mode transformation has been introduced. A typical example is presented. and the foregoing method has been perfectly verified.展开更多
针对平面麦克风阵列的声源三维坐标估计问题,文中在TDOA(Time Difference of Arrival)声源定位算法中引入粒子群优化算法进行位置估计。利用PHAT(Phase Transform)加权函数的广义互相关法计算得到时延差的真实值,结合麦克风的坐标位置,...针对平面麦克风阵列的声源三维坐标估计问题,文中在TDOA(Time Difference of Arrival)声源定位算法中引入粒子群优化算法进行位置估计。利用PHAT(Phase Transform)加权函数的广义互相关法计算得到时延差的真实值,结合麦克风的坐标位置,通过几何关系计算出假设声源到达麦克风之间的时延差的估计值。设计时延真实值和估计值差值的平方和为粒子适应度函数,利用粒子群优化算法搜索空间中符合适应度函数的声源点,实现声源位置估计。仿真结果表明,在计算速度与球形插值法相近的情况下,文中所提算法比球形插值法具有更好的鲁棒性和抗噪性。展开更多
文摘The principle and method of flexible multibody system dynamics is presented. The dynamic equation have been developed by means of Huston's method based on Kane's equation. In which the flexible members with general cross-section characters were divided into finite segment models under the assumption of small strain. In order to decrease the degrees of freedom of the system and increase the efficiency of numerical calculation. the mode transformation has been introduced. A typical example is presented. and the foregoing method has been perfectly verified.
文摘针对平面麦克风阵列的声源三维坐标估计问题,文中在TDOA(Time Difference of Arrival)声源定位算法中引入粒子群优化算法进行位置估计。利用PHAT(Phase Transform)加权函数的广义互相关法计算得到时延差的真实值,结合麦克风的坐标位置,通过几何关系计算出假设声源到达麦克风之间的时延差的估计值。设计时延真实值和估计值差值的平方和为粒子适应度函数,利用粒子群优化算法搜索空间中符合适应度函数的声源点,实现声源位置估计。仿真结果表明,在计算速度与球形插值法相近的情况下,文中所提算法比球形插值法具有更好的鲁棒性和抗噪性。