Background Cardiovascular diseases are closely linked to atherosclerotic plaque development and rupture.Plaque progression prediction is of fundamental significance to cardiovascular research and disease diagnosis,pre...Background Cardiovascular diseases are closely linked to atherosclerotic plaque development and rupture.Plaque progression prediction is of fundamental significance to cardiovascular research and disease diagnosis,prevention,and treatment.Generalized linear mixed models(GLMM)is an extension of linear model for categorical responses while considering the correlation among observations.Methods Magnetic resonance image(MRI)data of carotid atheroscleroticplaques were acquired from 20 patients with consent obtained and 3D thin-layer models were constructed to calculate plaque stress and strain for plaque progression prediction.Data for ten morphological and biomechanical risk factors included wall thickness(WT),lipid percent(LP),minimum cap thickness(MinCT),plaque area(PA),plaque burden(PB),lumen area(LA),maximum plaque wall stress(MPWS),maximum plaque wall strain(MPWSn),average plaque wall stress(APWS),and average plaque wall strain(APWSn)were extracted from all slices for analysis.Wall thickness increase(WTI),plaque burden increase(PBI)and plaque area increase(PAI) were chosen as three measures for plaque progression.Generalized linear mixed models(GLMM)with 5-fold cross-validation strategy were used to calculate prediction accuracy for each predictor and identify optimal predictor with the highest prediction accuracy defined as sum of sensitivity and specificity.All 201 MRI slices were randomly divided into 4 training subgroups and 1 verification subgroup.The training subgroups were used for model fitting,and the verification subgroup was used to estimate the model.All combinations(total1023)of 10 risk factors were feed to GLMM and the prediction accuracy of each predictor were selected from the point on the ROC(receiver operating characteristic)curve with the highest sum of specificity and sensitivity.Results LA was the best single predictor for PBI with the highest prediction accuracy(1.360 1),and the area under of the ROC curve(AUC)is0.654 0,followed by APWSn(1.336 3)with AUC=0.6342.The optimal predictor among all possible combinations for PBI was the combination of LA,PA,LP,WT,MPWS and MPWSn with prediction accuracy=1.414 6(AUC=0.715 8).LA was once again the best single predictor for PAI with the highest prediction accuracy(1.184 6)with AUC=0.606 4,followed by MPWSn(1. 183 2)with AUC=0.6084.The combination of PA,PB,WT,MPWS,MPWSn and APWSn gave the best prediction accuracy(1.302 5)for PAI,and the AUC value is 0.6657.PA was the best single predictor for WTI with highest prediction accuracy(1.288 7)with AUC=0.641 5,followed by WT(1.254 0),with AUC=0.6097.The combination of PA,PB,WT,LP,MinCT,MPWS and MPWS was the best predictor for WTI with prediction accuracy as 1.314 0,with AUC=0.6552.This indicated that PBI was a more predictable measure than WTI and PAI. The combinational predictors improved prediction accuracy by 9.95%,4.01%and 1.96%over the best single predictors for PAI,PBI and WTI(AUC values improved by9.78%,9.45%,and 2.14%),respectively.Conclusions The use of GLMM with 5-fold cross-validation strategy combining both morphological and biomechanical risk factors could potentially improve the accuracy of carotid plaque progression prediction.This study suggests that a linear combination of multiple predictors can provide potential improvement to existing plaque assessment schemes.展开更多
In forest science and practice, the total tree height is one of the basic morphometric attributes at the tree level and it has been closely linked with important stand attributes. In the current research, sixteen nonl...In forest science and practice, the total tree height is one of the basic morphometric attributes at the tree level and it has been closely linked with important stand attributes. In the current research, sixteen nonlinear functions for height prediction were tested in terms of their fitting ability against samples of Abies borisii regis and Pinus sylvestris trees from mountainous forests in central Greece. The fitting procedure was based on generalized nonlinear weighted regression. At the final stage, a five-quantile nonlinear height-diameter model was developed for both species through a quantile regression approach, to estimate the entire conditional distribution of tree height, enabling the evaluation of the diameter impact at various quantiles and providing a comprehensive understanding of the proposed relationship across the distribution. The results clearly showed that employing the diameter as the sole independent variable, the 3-parameter Hossfeld function and the 2-parameter N?slund function managed to explain approximately 84.0% and 81.7% of the total height variance in the case of King Boris fir and Scots pine species, respectively. Furthermore, the models exhibited low levels of error in both cases(2.310m for the fir and 3.004m for the pine), yielding unbiased predictions for both fir(-0.002m) and pine(-0.004m). Notably, all the required assumptions for homogeneity and normality of the associated residuals were achieved through the weighting procedure, while the quantile regression approach provided additional insights into the height-diameter allometry of the specific species. The proposed models can turn into valuable tools for operational forest management planning, particularly for wood production and conservation of mountainous forest ecosystems.展开更多
The issue of selection of bandwidth in kernel smoothing method is considered within the context of partially linear models, hi this paper, we study the asymptotic behavior of the bandwidth choice based on generalized ...The issue of selection of bandwidth in kernel smoothing method is considered within the context of partially linear models, hi this paper, we study the asymptotic behavior of the bandwidth choice based on generalized cross-validation (CCV) approach and prove that this bandwidth choice is asymptotically optimal. Numerical simulation are also conducted to investigate the empirical performance of generalized cross-valldation.展开更多
基金supported in part by National Sciences Foundation of China grant ( 11672001)Jiangsu Province Science and Technology Agency grant ( BE2016785)supported in part by Postgraduate Research & Practice Innovation Program of Jiangsu Province grant ( KYCX18_0156)
文摘Background Cardiovascular diseases are closely linked to atherosclerotic plaque development and rupture.Plaque progression prediction is of fundamental significance to cardiovascular research and disease diagnosis,prevention,and treatment.Generalized linear mixed models(GLMM)is an extension of linear model for categorical responses while considering the correlation among observations.Methods Magnetic resonance image(MRI)data of carotid atheroscleroticplaques were acquired from 20 patients with consent obtained and 3D thin-layer models were constructed to calculate plaque stress and strain for plaque progression prediction.Data for ten morphological and biomechanical risk factors included wall thickness(WT),lipid percent(LP),minimum cap thickness(MinCT),plaque area(PA),plaque burden(PB),lumen area(LA),maximum plaque wall stress(MPWS),maximum plaque wall strain(MPWSn),average plaque wall stress(APWS),and average plaque wall strain(APWSn)were extracted from all slices for analysis.Wall thickness increase(WTI),plaque burden increase(PBI)and plaque area increase(PAI) were chosen as three measures for plaque progression.Generalized linear mixed models(GLMM)with 5-fold cross-validation strategy were used to calculate prediction accuracy for each predictor and identify optimal predictor with the highest prediction accuracy defined as sum of sensitivity and specificity.All 201 MRI slices were randomly divided into 4 training subgroups and 1 verification subgroup.The training subgroups were used for model fitting,and the verification subgroup was used to estimate the model.All combinations(total1023)of 10 risk factors were feed to GLMM and the prediction accuracy of each predictor were selected from the point on the ROC(receiver operating characteristic)curve with the highest sum of specificity and sensitivity.Results LA was the best single predictor for PBI with the highest prediction accuracy(1.360 1),and the area under of the ROC curve(AUC)is0.654 0,followed by APWSn(1.336 3)with AUC=0.6342.The optimal predictor among all possible combinations for PBI was the combination of LA,PA,LP,WT,MPWS and MPWSn with prediction accuracy=1.414 6(AUC=0.715 8).LA was once again the best single predictor for PAI with the highest prediction accuracy(1.184 6)with AUC=0.606 4,followed by MPWSn(1. 183 2)with AUC=0.6084.The combination of PA,PB,WT,MPWS,MPWSn and APWSn gave the best prediction accuracy(1.302 5)for PAI,and the AUC value is 0.6657.PA was the best single predictor for WTI with highest prediction accuracy(1.288 7)with AUC=0.641 5,followed by WT(1.254 0),with AUC=0.6097.The combination of PA,PB,WT,LP,MinCT,MPWS and MPWS was the best predictor for WTI with prediction accuracy as 1.314 0,with AUC=0.6552.This indicated that PBI was a more predictable measure than WTI and PAI. The combinational predictors improved prediction accuracy by 9.95%,4.01%and 1.96%over the best single predictors for PAI,PBI and WTI(AUC values improved by9.78%,9.45%,and 2.14%),respectively.Conclusions The use of GLMM with 5-fold cross-validation strategy combining both morphological and biomechanical risk factors could potentially improve the accuracy of carotid plaque progression prediction.This study suggests that a linear combination of multiple predictors can provide potential improvement to existing plaque assessment schemes.
文摘In forest science and practice, the total tree height is one of the basic morphometric attributes at the tree level and it has been closely linked with important stand attributes. In the current research, sixteen nonlinear functions for height prediction were tested in terms of their fitting ability against samples of Abies borisii regis and Pinus sylvestris trees from mountainous forests in central Greece. The fitting procedure was based on generalized nonlinear weighted regression. At the final stage, a five-quantile nonlinear height-diameter model was developed for both species through a quantile regression approach, to estimate the entire conditional distribution of tree height, enabling the evaluation of the diameter impact at various quantiles and providing a comprehensive understanding of the proposed relationship across the distribution. The results clearly showed that employing the diameter as the sole independent variable, the 3-parameter Hossfeld function and the 2-parameter N?slund function managed to explain approximately 84.0% and 81.7% of the total height variance in the case of King Boris fir and Scots pine species, respectively. Furthermore, the models exhibited low levels of error in both cases(2.310m for the fir and 3.004m for the pine), yielding unbiased predictions for both fir(-0.002m) and pine(-0.004m). Notably, all the required assumptions for homogeneity and normality of the associated residuals were achieved through the weighting procedure, while the quantile regression approach provided additional insights into the height-diameter allometry of the specific species. The proposed models can turn into valuable tools for operational forest management planning, particularly for wood production and conservation of mountainous forest ecosystems.
文摘The issue of selection of bandwidth in kernel smoothing method is considered within the context of partially linear models, hi this paper, we study the asymptotic behavior of the bandwidth choice based on generalized cross-validation (CCV) approach and prove that this bandwidth choice is asymptotically optimal. Numerical simulation are also conducted to investigate the empirical performance of generalized cross-valldation.