In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso...In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.展开更多
Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NIS...Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.展开更多
With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed s...With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator.The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades,and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator.According to the structural parameters of the cooling system,the Taguchi method is used to decouple the structural variables.The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed,and the appropriate cooling structure scheme is determined.展开更多
This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a gen...This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.展开更多
We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of ...We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.展开更多
In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, ...In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.展开更多
In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis...In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis. Various related properties are explored. Finally, some computations of picture fuzzy functions over generalized picture fuzzy variables are illustrated by using our proposed technique.展开更多
This study addresses the pressing need to assess foundation bearing capacity in Opolo,Yenagoa,Bayelsa State,Nigeria.The significance lies in the dearth of comprehensive geotechnical data for construction planning in t...This study addresses the pressing need to assess foundation bearing capacity in Opolo,Yenagoa,Bayelsa State,Nigeria.The significance lies in the dearth of comprehensive geotechnical data for construction planning in the region.Past research is limited and this study contributes valuable insights by integrating Geographic Information System(GIS)with the Generalized Reciprocal Method(GRM).To collect data,near-surface seismic refraction surveys were conducted along three designated lines,utilizing ABEM Terraloc Mark 6 equipment,Easy Refract,and ArcGIS 10.4.1 software.This methodology allowed for the determination of key geotechnical parameters essential for soil characterization at potential foundation sites.The results revealed three distinct geoseismic layers.The uppermost layer,within a depth of 0.89 to 1.50 meters,exhibited inadequate compressional and shear wave velocities and low values for oedometric modulus,shear modulus,N-value,ultimate bearing capacity,and allowable bearing capacity.This indicates the presence of unsuitable,soft,and weak alluvial deposits for substantial structural loads.In contrast,the second layer(1.52 to 3.84 m depth)displayed favorable geotechnical parameters,making it suitable for various construction loads.The third layer(15.00 to 26.05 m depth)exhibited varying characteristics.The GIS analysis highlighted the unsuitability of the uppermost layer for construction,while the second and third layers were found to be fairly competent and suitable for shallow footing and foundation design.In summary,this study highlights the importance of geotechnical surveys in Opolo’s construction planning.It offers vital information for informed choices,addresses issues in the initial layer,and suggests secure,sustainable construction options.展开更多
The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers, but all the research work is limited in standard eigenproblems of ...The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers, but all the research work is limited in standard eigenproblems of symmetric tridiagonal matrix. The multisection method for solving the generalized eigenproblem applied significantly in many science and engineering domains has not been studied. The parallel region preserving multisection method (PRM for short) for solving generalized eigenproblems of large sparse and real symmetric matrix is presented in this paper. This method not only retains the advantages of the conventional determinant search method (DS for short), but also overcomes its disadvantages such as leaking roots and disconvergence. We have tested the method on the YH 1 vector computer, and compared it with the parallel region preserving determinant search method the parallel region preserving bisection method (PRB for short). The numerical results show that PRM has a higher speed up, for instance, it attains the speed up of 7.7 when the scale of the problem is 2 114 and the eigenpair found is 3, and PRM is superior to PRB when the scale of the problem is large.展开更多
Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer alg...Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.展开更多
The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementa...The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices.展开更多
In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseu...In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].展开更多
Some superconvergence results of generalized difference solution for elliptic boundary value problem are given. It is shown that optimal points of the stresses for generalized difference method are the same as that fo...Some superconvergence results of generalized difference solution for elliptic boundary value problem are given. It is shown that optimal points of the stresses for generalized difference method are the same as that for finite element method.展开更多
In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr¨odinger equat...In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr¨odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.展开更多
In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial f...In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.展开更多
A generalized finite spectral method is proposed. The method is of highorder accuracy. To attain high accuracy in time discretization, the fourth-order AdamsBashforth-Moulton predictor and corrector scheme was used. T...A generalized finite spectral method is proposed. The method is of highorder accuracy. To attain high accuracy in time discretization, the fourth-order AdamsBashforth-Moulton predictor and corrector scheme was used. To avoid numerical oscillations caused by the dispersion term in the KdV equation, two numerical techniques were introduced to improve the numerical stability. The Legendre, Chebyshev and Hermite polynomials were used as the basis functions. The proposed numerical scheme is validated by applications to the Burgers equation (nonlinear convection- diffusion problem) and KdV equation(single solitary and 2-solitary wave problems), where analytical solutions are available for comparison. Numerical results agree very well with the corresponding analytical solutions in all cases.展开更多
Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatia...Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between the results of the proposed solution and those obtained by other researchers. The results indicate that, although the load inertia effects in beams with higher span number would be intensified for higher levels of moving mass velocity, the maximum values of design parameters would increase either. Moreover, the possibility of mass separation is shown to be more critical as the span number of the beam increases. This fact also violates the linear relation between the mass weight of the moving load and the associated design parameters, especially for high moving mass velocities. However, as the relaxation rate of the beam material increases, the load inertia effects as well as the possibility of moving mass separation reduces.展开更多
Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational pr...Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational principles with multi-variables without arty variational crisis phenomenon. The method is to construct an energy trial-functional with an unknown function F, which can be readily identified by making the trial-functional stationary and using known constraint equations. As a result generalized variational principles with two kinds of independent variables (such as well-known Hellinger-Reissner variational principle and Hu-Washizu principle) and generalized variational principles with three kinds of independent variables (such as Chien's generalized variational principles) in elasticity have been deduced without using Lagrange multiplier method. By semi-inverse method, the author has also proved that Hu-Washizu principle is actually a variational principle with only two kinds of independent variables, stress-strain relations are still its constraints.展开更多
The generalized differential quadrature method (GDQM) is employed to con- sider the free vibration and critical speed of moderately thick rotating laminated compos- ite conical shells with different boundary conditi...The generalized differential quadrature method (GDQM) is employed to con- sider the free vibration and critical speed of moderately thick rotating laminated compos- ite conical shells with different boundary conditions developed from the first-order shear deformation theory (FSDT). The equations of motion are obtained applying Hamilton's concept, which contain the influence of the centrifugal force, the Coriolis acceleration, and the preliminary hoop stress. In addition, the axial load is applied to the conical shell as a ratio of the global critical buckling load. The governing partial differential equations are given in the expressions of five components of displacement related to the points ly- ing on the reference surface of the shell. Afterward, the governing differential equations are converted into a group of algebraic equations by using the GDQM. The outcomes are achieved considering the effects of stacking sequences, thickness of the shell, rotating velocities, half-vertex cone angle, and boundary conditions. Furthermore, the outcomes indicate that the rate of the convergence of frequencies is swift, and the numerical tech- nique is superior stable. Three comparisons between the selected outcomes and those of other research are accomplished, and excellent agreement is achieved.展开更多
The study of tidal circulation has a long history . The numerical simulation of tidal flow has been developed greatly with the development of computer techniques in the past two decades. The generalized wave equation ...The study of tidal circulation has a long history . The numerical simulation of tidal flow has been developed greatly with the development of computer techniques in the past two decades. The generalized wave equation finite-element method is a relatively new numerical model for studying shallow water flow . This method was used to simulate tidal waves of the Gulf of St. Lawrence in Canada . The very good agreement of the numerical results with the field data indicated that the model is an effective and promising numerical method for solving two-dimensional tidal wave problems .展开更多
基金supported by the Key Laboratory of Road Construction Technology and Equipment(Chang’an University,No.300102253502)the Natural Science Foundation of Shandong Province of China(GrantNo.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140).
文摘In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)。
文摘Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.
基金supported in part by the“Chunhui Plan”Collaborative Research Project of Chinese Ministry of Education under Grant HZKY20220604by the National Natural Science Foundation of China under Grant 52107007。
文摘With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator.The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades,and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator.According to the structural parameters of the cooling system,the Taguchi method is used to decouple the structural variables.The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed,and the appropriate cooling structure scheme is determined.
基金Project supported by the National Research Foundation of Korea(Nos.NRF-2020R1C1C1011970 and NRF-2018R1A5A7023490)。
文摘This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.
文摘We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.
文摘In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.
文摘In this article, we define the arithmetic operations of generalized trapezoidal picture fuzzy numbers by vertex method which is assembled on a combination of the (α, γ, β)-cut concept and standard interval analysis. Various related properties are explored. Finally, some computations of picture fuzzy functions over generalized picture fuzzy variables are illustrated by using our proposed technique.
文摘This study addresses the pressing need to assess foundation bearing capacity in Opolo,Yenagoa,Bayelsa State,Nigeria.The significance lies in the dearth of comprehensive geotechnical data for construction planning in the region.Past research is limited and this study contributes valuable insights by integrating Geographic Information System(GIS)with the Generalized Reciprocal Method(GRM).To collect data,near-surface seismic refraction surveys were conducted along three designated lines,utilizing ABEM Terraloc Mark 6 equipment,Easy Refract,and ArcGIS 10.4.1 software.This methodology allowed for the determination of key geotechnical parameters essential for soil characterization at potential foundation sites.The results revealed three distinct geoseismic layers.The uppermost layer,within a depth of 0.89 to 1.50 meters,exhibited inadequate compressional and shear wave velocities and low values for oedometric modulus,shear modulus,N-value,ultimate bearing capacity,and allowable bearing capacity.This indicates the presence of unsuitable,soft,and weak alluvial deposits for substantial structural loads.In contrast,the second layer(1.52 to 3.84 m depth)displayed favorable geotechnical parameters,making it suitable for various construction loads.The third layer(15.00 to 26.05 m depth)exhibited varying characteristics.The GIS analysis highlighted the unsuitability of the uppermost layer for construction,while the second and third layers were found to be fairly competent and suitable for shallow footing and foundation design.In summary,this study highlights the importance of geotechnical surveys in Opolo’s construction planning.It offers vital information for informed choices,addresses issues in the initial layer,and suggests secure,sustainable construction options.
文摘The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers, but all the research work is limited in standard eigenproblems of symmetric tridiagonal matrix. The multisection method for solving the generalized eigenproblem applied significantly in many science and engineering domains has not been studied. The parallel region preserving multisection method (PRM for short) for solving generalized eigenproblems of large sparse and real symmetric matrix is presented in this paper. This method not only retains the advantages of the conventional determinant search method (DS for short), but also overcomes its disadvantages such as leaking roots and disconvergence. We have tested the method on the YH 1 vector computer, and compared it with the parallel region preserving determinant search method the parallel region preserving bisection method (PRB for short). The numerical results show that PRM has a higher speed up, for instance, it attains the speed up of 7.7 when the scale of the problem is 2 114 and the eigenpair found is 3, and PRM is superior to PRB when the scale of the problem is large.
基金The project supported by National Natural Science Foundation of China under Grant No.10072013the National Key Basic Research Development Program under Grant No.G1998030600
文摘Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.
文摘The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices.
基金supported by Scientific Research Fund of Sichuan Provincial Education Department (09ZB102)Scientific Research Fund of Science and Technology Deportment of Sichuan Provincial (2011JYZ011)
文摘In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].
基金This work is supported by the Foundatiorl of Zhongshan University Advanced Research Centre
文摘Some superconvergence results of generalized difference solution for elliptic boundary value problem are given. It is shown that optimal points of the stresses for generalized difference method are the same as that for finite element method.
基金The NSF(11001042) of ChinaSRFDP(20100043120001)FRFCU(09QNJJ002)
文摘In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr¨odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.11071177)
文摘In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.
基金Project supported by the National Natural Science Foundation of China (No.10272118) the Hong Kong Polytechnic University Research Grant (No.A-PE28) the Research Fund for the Doctoral Program of Ministry of Education of China (No.20020558013)
文摘A generalized finite spectral method is proposed. The method is of highorder accuracy. To attain high accuracy in time discretization, the fourth-order AdamsBashforth-Moulton predictor and corrector scheme was used. To avoid numerical oscillations caused by the dispersion term in the KdV equation, two numerical techniques were introduced to improve the numerical stability. The Legendre, Chebyshev and Hermite polynomials were used as the basis functions. The proposed numerical scheme is validated by applications to the Burgers equation (nonlinear convection- diffusion problem) and KdV equation(single solitary and 2-solitary wave problems), where analytical solutions are available for comparison. Numerical results agree very well with the corresponding analytical solutions in all cases.
文摘Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between the results of the proposed solution and those obtained by other researchers. The results indicate that, although the load inertia effects in beams with higher span number would be intensified for higher levels of moving mass velocity, the maximum values of design parameters would increase either. Moreover, the possibility of mass separation is shown to be more critical as the span number of the beam increases. This fact also violates the linear relation between the mass weight of the moving load and the associated design parameters, especially for high moving mass velocities. However, as the relaxation rate of the beam material increases, the load inertia effects as well as the possibility of moving mass separation reduces.
文摘Semi-inverse method, which is an integration and an extension of Hu's try-and-error method, Chien's veighted residual method and Liu's systematic method, is proposed to establish generalized variational principles with multi-variables without arty variational crisis phenomenon. The method is to construct an energy trial-functional with an unknown function F, which can be readily identified by making the trial-functional stationary and using known constraint equations. As a result generalized variational principles with two kinds of independent variables (such as well-known Hellinger-Reissner variational principle and Hu-Washizu principle) and generalized variational principles with three kinds of independent variables (such as Chien's generalized variational principles) in elasticity have been deduced without using Lagrange multiplier method. By semi-inverse method, the author has also proved that Hu-Washizu principle is actually a variational principle with only two kinds of independent variables, stress-strain relations are still its constraints.
文摘The generalized differential quadrature method (GDQM) is employed to con- sider the free vibration and critical speed of moderately thick rotating laminated compos- ite conical shells with different boundary conditions developed from the first-order shear deformation theory (FSDT). The equations of motion are obtained applying Hamilton's concept, which contain the influence of the centrifugal force, the Coriolis acceleration, and the preliminary hoop stress. In addition, the axial load is applied to the conical shell as a ratio of the global critical buckling load. The governing partial differential equations are given in the expressions of five components of displacement related to the points ly- ing on the reference surface of the shell. Afterward, the governing differential equations are converted into a group of algebraic equations by using the GDQM. The outcomes are achieved considering the effects of stacking sequences, thickness of the shell, rotating velocities, half-vertex cone angle, and boundary conditions. Furthermore, the outcomes indicate that the rate of the convergence of frequencies is swift, and the numerical tech- nique is superior stable. Three comparisons between the selected outcomes and those of other research are accomplished, and excellent agreement is achieved.
文摘The study of tidal circulation has a long history . The numerical simulation of tidal flow has been developed greatly with the development of computer techniques in the past two decades. The generalized wave equation finite-element method is a relatively new numerical model for studying shallow water flow . This method was used to simulate tidal waves of the Gulf of St. Lawrence in Canada . The very good agreement of the numerical results with the field data indicated that the model is an effective and promising numerical method for solving two-dimensional tidal wave problems .