A subgroup H is called S-seminormal in a finite group G if H permutes with all Sylow p-subgroups of G with (p, |H| =1. The main object of this paper is to generalize some known results about finite supersolvable group...A subgroup H is called S-seminormal in a finite group G if H permutes with all Sylow p-subgroups of G with (p, |H| =1. The main object of this paper is to generalize some known results about finite supersolvable groups to a saturated formation containing the class of finite supersolvable groups.展开更多
Let G be a finite group and Outcoz(G) the Coleman outer automorphism group of G(for the definition, see below). The question whether Outcol(G) is a p′-group naturally arises from the study of the normalizer pro...Let G be a finite group and Outcoz(G) the Coleman outer automorphism group of G(for the definition, see below). The question whether Outcol(G) is a p′-group naturally arises from the study of the normalizer problem for integral group rings, where p is a prime. In this article, some sufficient conditions for OutCol(G) to be a p'-group are obtained. Our results generalize some well-known theorems.展开更多
Let H be a subgroup of a group G. Then H is said to be S-quasinormal in G if HP = PH for every Sylow subgroup P of G; H is said to be S-quasinormally embedded in G if a Sylow p-subgroup of H is also a Sylow p-subgroup...Let H be a subgroup of a group G. Then H is said to be S-quasinormal in G if HP = PH for every Sylow subgroup P of G; H is said to be S-quasinormally embedded in G if a Sylow p-subgroup of H is also a Sylow p-subgroup of some S-quasinormal subgroup of G for each prime p dividing the order of H. In this paper, we say that H is weakly S-embedded in G if G has a normal subgroup T such that HT is an S-quasinormal subgroup of G and H VIT ≤ HSE, where HSE denotes the subgroup of H generated by all those subgroups of H which are S-quasinormally embedded in G. Some results about the influence of weakly S-embedded subgroups on the structure of finite groups are given.展开更多
Let G be a finite group.The question how the properties of its minimal subgroups influence the structure of G is of considerable interest for some scholars.In this paper we try to use c-normal condition on minimal sub...Let G be a finite group.The question how the properties of its minimal subgroups influence the structure of G is of considerable interest for some scholars.In this paper we try to use c-normal condition on minimal subgroups to characterize the structure of G.Some previously known results are generalized.展开更多
Suppose that G is a finite group and H is a subgroup of G. We say that H is ssemipermutable in G if HGv = GpH for any Sylow p-subgroup Gp of G with (p, |H|) = 1. We investigate the influence of s-semipermutable su...Suppose that G is a finite group and H is a subgroup of G. We say that H is ssemipermutable in G if HGv = GpH for any Sylow p-subgroup Gp of G with (p, |H|) = 1. We investigate the influence of s-semipermutable subgroups on the structure of finite groups. Some recent results are generalized and unified.展开更多
Let X be a nonempty subset of a group G. A subgroup H of G is said to be X- s-permutable in G if there exists an element x E X such that HP^x = P^xH for every Sylow subgroup P of G. In this paper, some new results are...Let X be a nonempty subset of a group G. A subgroup H of G is said to be X- s-permutable in G if there exists an element x E X such that HP^x = P^xH for every Sylow subgroup P of G. In this paper, some new results are given under the assumption that some suited subgroups of G are X-s-permutable in G.展开更多
AbstractLet G be a finite group and H a subgroup of G. Then H is said to be S-permutable in G if HP = PH for all Sylow subgroups P of G. Let H sG be the subgroup of H generated by all those subgroups of H which are S-...AbstractLet G be a finite group and H a subgroup of G. Then H is said to be S-permutable in G if HP = PH for all Sylow subgroups P of G. Let H sG be the subgroup of H generated by all those subgroups of H which are S-permutable in G. Then we say that H is S-embedded in G if G has a normal subgroup T and an S-permutable subgroup C such that T ∩ H ? H sG and HT = C.Our main result is the followingTheorem AA group G is supersoluble if and only if for every non-cyclic Sylow subgroup P of the generalized Fitting subgroup F*(G) of G, at least one of the following holds: Every maximal subgroup of P is S-embedded in G.Every cyclic subgroup H of P with prime order or order 4 (if P is a non-abelian 2-group and H ? Z ∞ (G)) is S-embedded in G.展开更多
In this paper, we give a positive answer to a recent open problem of Skiba in Kourovka Notebook without using the odd order theorem and other deep theorems. Some of the techniques are improved.
文摘A subgroup H is called S-seminormal in a finite group G if H permutes with all Sylow p-subgroups of G with (p, |H| =1. The main object of this paper is to generalize some known results about finite supersolvable groups to a saturated formation containing the class of finite supersolvable groups.
基金Supported by NSF of China(11171169)the B.S.Foundation of Shandong Province(BS2012SF003)
文摘Let G be a finite group and Outcoz(G) the Coleman outer automorphism group of G(for the definition, see below). The question whether Outcol(G) is a p′-group naturally arises from the study of the normalizer problem for integral group rings, where p is a prime. In this article, some sufficient conditions for OutCol(G) to be a p'-group are obtained. Our results generalize some well-known theorems.
基金supported by National Natural Science Foundation of China (Grant Nos.10771172,11001226)Postgraduate Innovation Foundation of Southwest University (Grant Nos. ky2009013,ky2010007)
文摘Let H be a subgroup of a group G. Then H is said to be S-quasinormal in G if HP = PH for every Sylow subgroup P of G; H is said to be S-quasinormally embedded in G if a Sylow p-subgroup of H is also a Sylow p-subgroup of some S-quasinormal subgroup of G for each prime p dividing the order of H. In this paper, we say that H is weakly S-embedded in G if G has a normal subgroup T such that HT is an S-quasinormal subgroup of G and H VIT ≤ HSE, where HSE denotes the subgroup of H generated by all those subgroups of H which are S-quasinormally embedded in G. Some results about the influence of weakly S-embedded subgroups on the structure of finite groups are given.
基金The author is supported in part by NSF of China and NSF of Guangdong Province
文摘Let G be a finite group.The question how the properties of its minimal subgroups influence the structure of G is of considerable interest for some scholars.In this paper we try to use c-normal condition on minimal subgroups to characterize the structure of G.Some previously known results are generalized.
基金Supported by National Natural Science Foundation of China (Grant No.10871210)Natural Science Foundation of Guangdong Province (Grant No.06023728)
文摘Suppose that G is a finite group and H is a subgroup of G. We say that H is ssemipermutable in G if HGv = GpH for any Sylow p-subgroup Gp of G with (p, |H|) = 1. We investigate the influence of s-semipermutable subgroups on the structure of finite groups. Some recent results are generalized and unified.
基金Supported by the National Natural Science Foundation of China (Grant No10871210)the Natural Science Foundation of Guangdong Province (Grant No06023728)
文摘Let X be a nonempty subset of a group G. A subgroup H of G is said to be X- s-permutable in G if there exists an element x E X such that HP^x = P^xH for every Sylow subgroup P of G. In this paper, some new results are given under the assumption that some suited subgroups of G are X-s-permutable in G.
基金supported by National Natural Science Foundation of China (Grant No. 10771180)
文摘AbstractLet G be a finite group and H a subgroup of G. Then H is said to be S-permutable in G if HP = PH for all Sylow subgroups P of G. Let H sG be the subgroup of H generated by all those subgroups of H which are S-permutable in G. Then we say that H is S-embedded in G if G has a normal subgroup T and an S-permutable subgroup C such that T ∩ H ? H sG and HT = C.Our main result is the followingTheorem AA group G is supersoluble if and only if for every non-cyclic Sylow subgroup P of the generalized Fitting subgroup F*(G) of G, at least one of the following holds: Every maximal subgroup of P is S-embedded in G.Every cyclic subgroup H of P with prime order or order 4 (if P is a non-abelian 2-group and H ? Z ∞ (G)) is S-embedded in G.
基金This work was supported by the National Natural Science Foundation of China,the Natural Science Foundation of Guangdong ProvinceFund from Education Ministry of China and ARC of ZSU.
文摘In this paper, we give a positive answer to a recent open problem of Skiba in Kourovka Notebook without using the odd order theorem and other deep theorems. Some of the techniques are improved.