In this paper, the variational principles of hydrodynamic problems for the incompressible and compressible viscous fluids are established. These principles are principles of maximum power losses. Their generalized var...In this paper, the variational principles of hydrodynamic problems for the incompressible and compressible viscous fluids are established. These principles are principles of maximum power losses. Their generalized variational principles are also discussed on the basis of Lagrangian multiplier methods.展开更多
The role of viscosity coefficient(η′), coulomb coupling parameter(Γ) and dust mass on the growth of jeans mode is investigated in strongly coupled dusty plasma using equations of Generalized Hydrodynamics(GH) Model...The role of viscosity coefficient(η′), coulomb coupling parameter(Γ) and dust mass on the growth of jeans mode is investigated in strongly coupled dusty plasma using equations of Generalized Hydrodynamics(GH) Model. The novel aspect of this work is that the force arising due to electrostatic pressure caused by grain grain interaction has been included in the dynamics of dust particles. This force is found to play a significant role in counter balancing the self gravity effect, thereby reducing the growth rate of jeans instability. The present work may provide more physical insight in understanding the mechanisms behind formation of planetesimals, stars etc.展开更多
The theory of dynamical (wa&e) potential behind a moving test charge in a weakly coupled dusty plasma is extended to that including of strong interaction between dust grains. Such strong interaction is included in ...The theory of dynamical (wa&e) potential behind a moving test charge in a weakly coupled dusty plasma is extended to that including of strong interaction between dust grains. Such strong interaction is included in the dielectric response function by a generalized hydrodynamic (GH) fluid model. It is shown that the strong interaction between dusts including the lattice spacing correction has a significant effect on the wake potential in dusty plasma. This may be used to investigate basic features of phase transition and possibility of lattice formation of dusty plasma.展开更多
文摘In this paper, the variational principles of hydrodynamic problems for the incompressible and compressible viscous fluids are established. These principles are principles of maximum power losses. Their generalized variational principles are also discussed on the basis of Lagrangian multiplier methods.
文摘The role of viscosity coefficient(η′), coulomb coupling parameter(Γ) and dust mass on the growth of jeans mode is investigated in strongly coupled dusty plasma using equations of Generalized Hydrodynamics(GH) Model. The novel aspect of this work is that the force arising due to electrostatic pressure caused by grain grain interaction has been included in the dynamics of dust particles. This force is found to play a significant role in counter balancing the self gravity effect, thereby reducing the growth rate of jeans instability. The present work may provide more physical insight in understanding the mechanisms behind formation of planetesimals, stars etc.
文摘The theory of dynamical (wa&e) potential behind a moving test charge in a weakly coupled dusty plasma is extended to that including of strong interaction between dust grains. Such strong interaction is included in the dielectric response function by a generalized hydrodynamic (GH) fluid model. It is shown that the strong interaction between dusts including the lattice spacing correction has a significant effect on the wake potential in dusty plasma. This may be used to investigate basic features of phase transition and possibility of lattice formation of dusty plasma.