This paper presents a quasi-static implicit generalized interpolation material point method(i GIMP)with B-bar approach for large deformation geotechnical problems.The i GIMP algorithm is an extension of the implicit m...This paper presents a quasi-static implicit generalized interpolation material point method(i GIMP)with B-bar approach for large deformation geotechnical problems.The i GIMP algorithm is an extension of the implicit material point method(iMPM).The global stiffness matrix is formed explicitly and the Newton-Raphson iterative method is used to solve the equilibrium equations.Where possible,the implementation procedure closely follows standard finite element method(FEM)approaches to allow easy conversion of other FEM codes.The generalized interpolation function is assigned to eliminate the inherent cell crossing noise within conventional MPM.For the first time,the B-bar approach is used to overcome volumetric locking in standard GIMP method for near-incompressible non-linear geomechanics.The proposed i GIMP was tested and compared with i MPM and analytical solutions via a 1 D column compression problem.Results highlighted the superiority of the i GIMP approach in reducing stress oscillations,thereby improving computational accuracy.Then,elasto-plastic slope stabilities and rigid footing problems were considered,further illustrating the ability of the proposed method to overcome volumetric locking due to incompressibility.Results showed that the proposed i GIMP with B-bar approach can be used to simulate geotechnical problems with large deformations.展开更多
Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors...Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations.展开更多
Let f∈C[-1,1]and R. (r≥1 ) be the reneralized Pal iner polation polynomials satisf ying the conditions Rn, where{xk} are the roots of n-th Jacobi polynomial Pn and are the roots of In this paper,we prove that Rn...Let f∈C[-1,1]and R. (r≥1 ) be the reneralized Pal iner polation polynomials satisf ying the conditions Rn, where{xk} are the roots of n-th Jacobi polynomial Pn and are the roots of In this paper,we prove that Rn holds uniformly on [0,1].展开更多
Three-dimensional rock fracture induced by blasting is a highly complex problem and has received considerable attention in geotechnical engineering.The material point method is firstly applied to treat this challengin...Three-dimensional rock fracture induced by blasting is a highly complex problem and has received considerable attention in geotechnical engineering.The material point method is firstly applied to treat this challenging task.Some inherent weaknesses can be overcome by coupling the generalized interpolation material point(GIMP)and the convected particle domain interpolation technique(CPDI).For the media in the borehole,unchanged GIMP-type particles are used to guarantee a homogenous blast pressure.CPDITetrahedron type particles are employed to avoid the fake numerical fracture near the borehole for the rock material.A blasting experiment using three-dimensional single-borehole rock was simulated to examine the applicability of the coupled model under realistic loading and boundary conditions.A good agreement was achieved between the simulation and experimental results.Moreover,the mechanism of three-dimensional rock fracture was analyzed.It was concluded that rock particle size and material parameters play an important role in rock damage.The reflected tensile waves cause severe damage in the lower part of the model.Rayleigh waves occur on the top face of the rock model to induce a hoop failure band.展开更多
Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also gi...Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.展开更多
The time delay estimation (TDE) of two different received signals from the same source has attracted many interests of researchers in the field of signal processing. A method described for precisely estimating time de...The time delay estimation (TDE) of two different received signals from the same source has attracted many interests of researchers in the field of signal processing. A method described for precisely estimating time delay in this paper is based on the assumption that little priori knowledge on statistical characteristics is available for the received signals. The variance of the estimate is derived . The basic architecture of this method is to use the adaptive noise canceller, in the steady state , and to interpolate the weight coefficients by using a generalized quadratic interpolation matrix. The formula of the time delay estimation is presented . The method proposed by F.A. Reed is a special case of this method . The hardware implementation is much easier than that of the conventional time delay estimation method . The results of the system simulation and the experimental results at sea show a good agreement with the theoretical analysis.展开更多
We introduce the generalized Jacobi-Gauss-Lobatto interpolation involving the values of functions and their derivatives at the endpoints, which play important roles in the Jacobi pseudospectral methods for high order ...We introduce the generalized Jacobi-Gauss-Lobatto interpolation involving the values of functions and their derivatives at the endpoints, which play important roles in the Jacobi pseudospectral methods for high order problems. We establish some results on these interpolations in non-uniformly weighted Sobolev spaces, which serve as the basic tools in analysis of numerical quadratures and various numerical methods of differential and integral equations.展开更多
基金the National Natural Science Foundation of China(Nos.41807223 and 51908175)the Fundamental Research Funds for the Central Universities(No.B210202096)+1 种基金the Natural Science Foundation of Guangdong Province(No.2018A030310346)the Water Conservancy Science and Technology Innovation Project of Guangdong Province(No.2020-11),China。
文摘This paper presents a quasi-static implicit generalized interpolation material point method(i GIMP)with B-bar approach for large deformation geotechnical problems.The i GIMP algorithm is an extension of the implicit material point method(iMPM).The global stiffness matrix is formed explicitly and the Newton-Raphson iterative method is used to solve the equilibrium equations.Where possible,the implementation procedure closely follows standard finite element method(FEM)approaches to allow easy conversion of other FEM codes.The generalized interpolation function is assigned to eliminate the inherent cell crossing noise within conventional MPM.For the first time,the B-bar approach is used to overcome volumetric locking in standard GIMP method for near-incompressible non-linear geomechanics.The proposed i GIMP was tested and compared with i MPM and analytical solutions via a 1 D column compression problem.Results highlighted the superiority of the i GIMP approach in reducing stress oscillations,thereby improving computational accuracy.Then,elasto-plastic slope stabilities and rigid footing problems were considered,further illustrating the ability of the proposed method to overcome volumetric locking due to incompressibility.Results showed that the proposed i GIMP with B-bar approach can be used to simulate geotechnical problems with large deformations.
基金We gratefully acknowledge the support of National Natural Science Foundation of China(NSFC)(Grant No.51977133&Grant No.U2066209).
文摘Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations.
基金Supported by the Science Foundation of CSBTB the Natural Science Foundatioin of Zhejiang.
文摘Let f∈C[-1,1]and R. (r≥1 ) be the reneralized Pal iner polation polynomials satisf ying the conditions Rn, where{xk} are the roots of n-th Jacobi polynomial Pn and are the roots of In this paper,we prove that Rn holds uniformly on [0,1].
基金This research was funded by the Natural Science Foundation of Sichuan,China(No.2022NSFSC1915)the National Natural Science Foundation of China(No.U19A2098)+1 种基金State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,Jianghan University(No.PBSKL2022B06)the Fundamental Research Funds for the Central Universities。
文摘Three-dimensional rock fracture induced by blasting is a highly complex problem and has received considerable attention in geotechnical engineering.The material point method is firstly applied to treat this challenging task.Some inherent weaknesses can be overcome by coupling the generalized interpolation material point(GIMP)and the convected particle domain interpolation technique(CPDI).For the media in the borehole,unchanged GIMP-type particles are used to guarantee a homogenous blast pressure.CPDITetrahedron type particles are employed to avoid the fake numerical fracture near the borehole for the rock material.A blasting experiment using three-dimensional single-borehole rock was simulated to examine the applicability of the coupled model under realistic loading and boundary conditions.A good agreement was achieved between the simulation and experimental results.Moreover,the mechanism of three-dimensional rock fracture was analyzed.It was concluded that rock particle size and material parameters play an important role in rock damage.The reflected tensile waves cause severe damage in the lower part of the model.Rayleigh waves occur on the top face of the rock model to induce a hoop failure band.
基金Supported by NNSF and RFDP of Higher Education of China.
文摘Some quadrature formulae for the numerical evaluation of singular integrals of arbitrary order are established and both the estimate of remainder and the convergence of each quadrature formula derived here are also given.
文摘The time delay estimation (TDE) of two different received signals from the same source has attracted many interests of researchers in the field of signal processing. A method described for precisely estimating time delay in this paper is based on the assumption that little priori knowledge on statistical characteristics is available for the received signals. The variance of the estimate is derived . The basic architecture of this method is to use the adaptive noise canceller, in the steady state , and to interpolate the weight coefficients by using a generalized quadratic interpolation matrix. The formula of the time delay estimation is presented . The method proposed by F.A. Reed is a special case of this method . The hardware implementation is much easier than that of the conventional time delay estimation method . The results of the system simulation and the experimental results at sea show a good agreement with the theoretical analysis.
基金This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11171125, 11271118, 91130003), the National Natural Science Foundation of China (Tianyuan Fund for Mathematics, Grant No. 11226170), the Natural Science Foundation of Hunan Province (Grant No. 13JJ4095), the Postdoctoral Foundation of China (Grant No. 20100471182), the Construct Program of the Key Discipline in Hunan Province, and the Key Foundation of Hunan Provincial Education Department (Grant No. 11A043).
文摘We introduce the generalized Jacobi-Gauss-Lobatto interpolation involving the values of functions and their derivatives at the endpoints, which play important roles in the Jacobi pseudospectral methods for high order problems. We establish some results on these interpolations in non-uniformly weighted Sobolev spaces, which serve as the basic tools in analysis of numerical quadratures and various numerical methods of differential and integral equations.