期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Generalized Inverse Eigenvalue Problem for Centrohermitian Matrices
1
作者 刘仲云 谭艳祥 田兆录 《Journal of Shanghai University(English Edition)》 CAS 2004年第4期448-454,共7页
In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of co... In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it. 展开更多
关键词 centrohermitian matrix generalized inverse eigenvalue problem optimal approximation.
下载PDF
Generalized Inverse Eigenvalue Problem for (P,Q)-Conjugate Matrices and the Associated Approximation Problem 被引量:1
2
作者 DAI Lifang LIANG Maolin 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2016年第2期93-98,共6页
In this paper,the generalized inverse eigenvalue problem for the(P,Q)-conjugate matrices and the associated approximation problem are discussed by using generalized singular value decomposition(GSVD).Moreover,the ... In this paper,the generalized inverse eigenvalue problem for the(P,Q)-conjugate matrices and the associated approximation problem are discussed by using generalized singular value decomposition(GSVD).Moreover,the least residual problem of the above generalized inverse eigenvalue problem is studied by using the canonical correlation decomposition(CCD).The solutions to these problems are derived.Some numerical examples are given to illustrate the main results. 展开更多
关键词 generalized inverse eigenvalue problem least residual problem (P Q)-conjugate matrices generalized singular value decomposition (GSVD) canonical correlation decomposition (CCD) optimal approximation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部