We investigate (2+1)-dimensional generalized modified dispersive water wave (GMDWW) equation by utilizing the bifurcation theory of dynamical systems. We give the phase portraits and bifurcation analysis of the plane ...We investigate (2+1)-dimensional generalized modified dispersive water wave (GMDWW) equation by utilizing the bifurcation theory of dynamical systems. We give the phase portraits and bifurcation analysis of the plane system corresponding to the GMDWW equation. By using the special orbits in the phase portraits, we analyze the existence of the traveling wave solutions. When some parameter takes special values, we obtain abundant exact kink wave solutions, singular wave solutions, periodic wave solutions, periodic singular wave solutions, and solitary wave solutions for the GMDWW equation.展开更多
In this article, we study the Lax pairs of -dimensional equation: the modified generalized dispersive long wave (MGDLW) equation. Based on the well-known binary Darboux transformation, we dig out the recursion formula...In this article, we study the Lax pairs of -dimensional equation: the modified generalized dispersive long wave (MGDLW) equation. Based on the well-known binary Darboux transformation, we dig out the recursion formulas of the first part of the Lax pairs. Then by further discussion and doing some revisional work, we make the recursion formulas fit for the second part of Lax pairs. At last, some solutions to the MGDLW equation are worked out by using the recursion formula.展开更多
In the paper we discuss the Wronskian solutions of modified Korteweg-de Vries equation (mKdV) via the Backlund transformation (BT) and a generalized Wronskian condition is given, which allows us to substitute an a...In the paper we discuss the Wronskian solutions of modified Korteweg-de Vries equation (mKdV) via the Backlund transformation (BT) and a generalized Wronskian condition is given, which allows us to substitute an arbitrary coefficient matrix in the GN (t) for the original diagonal one.展开更多
In this paper, we present a solution methodology to obtain exact solutions of some nonlinear evolution equation by modifying the homogeneous balance method. Based on the modified homogeneous balance method, several ki...In this paper, we present a solution methodology to obtain exact solutions of some nonlinear evolution equation by modifying the homogeneous balance method. Based on the modified homogeneous balance method, several kinds of exact(new) solutions of the generalized KdV equation are obtained.展开更多
In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmeth...In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmethod proposed by Lou [J. Phys. A: Math. Gen. 38 (2005) L129], more general symmetry groups are obtained andthe relationship between the new solution and known solution is set up. At the same time, the Lie symmetry groupsobtained are only special cases of the more general symmetry groups. At last, some exact solutions of GSS equationsare constructed by the relationship obtained in the paper between the new solution and known solution.展开更多
By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic functio...By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions.展开更多
In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation...In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.展开更多
In this article, we consider the Cauchy problems for the modified Kawahara equationδtu+μδx(u3)+αδx5u+βδx3u+γδxu=0 and the Kaup-Kupershmidt equation δtu+μuδx2u+αδx5u+βδx3u+βδx3u+γδxu=0Usi...In this article, we consider the Cauchy problems for the modified Kawahara equationδtu+μδx(u3)+αδx5u+βδx3u+γδxu=0 and the Kaup-Kupershmidt equation δtu+μuδx2u+αδx5u+βδx3u+βδx3u+γδxu=0Using the general well-posedness principle introduced by I. Bejenaru and T. Tao, we prove 1 that the modified Kawahara equation is ill-posed for the initial data in H8 (It) with s 〈 - and that the Kaup-Kupershmidt equation is ill-posed for the initial data in HS(It) with s〈0.展开更多
New two-component vector breather solution of the modified Benjamin-Bona-Mahony(MBBM)equation is considered.Using the generalized perturbation reduction method,the MBBM equation is reduced to the coupled nonlinear Sch...New two-component vector breather solution of the modified Benjamin-Bona-Mahony(MBBM)equation is considered.Using the generalized perturbation reduction method,the MBBM equation is reduced to the coupled nonlinear Schr¨odinger equations for auxiliary functions.Explicit analytical expressions for the profile and parameters of the vector breather oscillating with the sum and difference of the frequencies and wavenumbers are presented.The two-component vector breather and single-component scalar breather of the MBBM equation is compared.展开更多
In this paper, we investigate some new traveling wave solutions to Vakhnenko-Parkes equation via three modified mathematical methods. The derived solutions have been obtained including periodic and solitons solutions ...In this paper, we investigate some new traveling wave solutions to Vakhnenko-Parkes equation via three modified mathematical methods. The derived solutions have been obtained including periodic and solitons solutions in the form of trigonometric, hyperbolic, and rational function solutions. The graphical representations of some solutions by assigning particular values to the parameters under prescribed conditions in each solutions and comparing of solutions with those gained by other authors indicate that these employed techniques are more effective, efficient and applicable mathematical tools for solving nonlinear problems in applied science.展开更多
Approximate bound state solutions of spinless particles with a special case of equal scalar and vector modified generalized Hulthen potential has been obtained under the massive Klein-Gordon equation. The energy eigen...Approximate bound state solutions of spinless particles with a special case of equal scalar and vector modified generalized Hulthen potential has been obtained under the massive Klein-Gordon equation. The energy eigenvalues and the corresponding wave functions expressed in terms of a Jacobi polynomial are also obtained using the parametric generalization of the Nikiforov-Uvarov (NU) method. Under limiting cases our result are in agreement with the existing literature. Our results could be used to study the interactions and binding energies of the central potential for diatomic molecules in the relativistic framework which have many applications in physics and some others related disciplines.展开更多
A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presen...A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presented by Maday and Quarteroni. A modified Fourier pseudospectral method is also presented, with the same convergence properties as the Fourier spectral method.展开更多
In this paper,we obtained the topological soliton solution of the(1+1)-dimensional generalized modified Benjamin-Bona-Mahony equation and shock wave solution of the generalized Boussinesq equation.We get that solution...In this paper,we obtained the topological soliton solution of the(1+1)-dimensional generalized modified Benjamin-Bona-Mahony equation and shock wave solution of the generalized Boussinesq equation.We get that solutions by using solitary wave ansatz in terms of tanh^(p) functions.The velocity and the free parameters are the physical parameters in the soliton solutions.They can be obtained as functions of the dependent model coefficients.The domain restriction were also identified in the process.we hope that in nonlinear dynamical system these solutions will be explain some nonlinear physical phenomena.展开更多
By means of the undetermined assumption method, we obtain some new exact solitary-wave solutions with hyperbolic secant function fractional form and periodic wave solutions with cosine function form for the generalize...By means of the undetermined assumption method, we obtain some new exact solitary-wave solutions with hyperbolic secant function fractional form and periodic wave solutions with cosine function form for the generalized modified Boussinesq equation. We also discuss the boundedness of these solutions. More over, we study the correlative characteristic of the solitary-wave solutions and the periodic wave solutions along with the travelling wave velocity's variation.展开更多
In this study,the generalized modified variable-coefficient KdV equation with external-force term(gvcmKdV)describing atmospheric blocking located in the mid-high latitudes over ocean is studied for integrability prope...In this study,the generalized modified variable-coefficient KdV equation with external-force term(gvcmKdV)describing atmospheric blocking located in the mid-high latitudes over ocean is studied for integrability property by using consistent Riccati expansion solvability and the necessary integrability conditions between the function coefficients are obtained.Moreover,several new solutions have been constructed for the gvcmKdV.Additionally,the classical direct similarity reduction method is used to re-duce the gvcmKdV to a nonlinear ordinary differential equation.Building on the solutions given in the previous literature for the reduced equation,many novel solitary and periodic wave solutions have been obtained for the gvcmKdV.展开更多
In this paper, we study an elliptic equation with four distinct real roots and obtain five new solutions to this type of elliptic equation. Using these obtained new elliptic function solutions we can construct a serie...In this paper, we study an elliptic equation with four distinct real roots and obtain five new solutions to this type of elliptic equation. Using these obtained new elliptic function solutions we can construct a series of explicit exact solutions for many nonlinear evolution equations. As examples, we choose combined KdV-MKdV equation, a fourth-order integrable nonlinear Schrödinger equation and generalized Dullin-Gottwald-Holm equation to demonstrate the effectiveness of these new elliptic function solutions. These new elliptic function solutions can be applied to many other nonlinear evolution equations.展开更多
We have utilized three novel methods,called generalized direct algebraic,modified F-expansion and improved simple equation methods to construct traveling wave solutions of the system of shallow water wave equations an...We have utilized three novel methods,called generalized direct algebraic,modified F-expansion and improved simple equation methods to construct traveling wave solutions of the system of shallow water wave equations and modified Benjamin-Bona-Mahony equation.After substituting particular values of the parameters,different solitary wave solutions are derived from the exact traveling wave solutions.It is shown that these employed methods are more powerful tools for nonlinear wave equations.展开更多
In this study,we prove that modified diffusion equations,including the generalized Burgers'equation with variable coefficients,can be derived from the Black-Scholes equation with a time-dependent parameter based o...In this study,we prove that modified diffusion equations,including the generalized Burgers'equation with variable coefficients,can be derived from the Black-Scholes equation with a time-dependent parameter based on the propagator method known in quantum and statistical physics.The extension for the case of a local fractal derivative is also addressed and analyzed.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11361069 and 11775146).
文摘We investigate (2+1)-dimensional generalized modified dispersive water wave (GMDWW) equation by utilizing the bifurcation theory of dynamical systems. We give the phase portraits and bifurcation analysis of the plane system corresponding to the GMDWW equation. By using the special orbits in the phase portraits, we analyze the existence of the traveling wave solutions. When some parameter takes special values, we obtain abundant exact kink wave solutions, singular wave solutions, periodic wave solutions, periodic singular wave solutions, and solitary wave solutions for the GMDWW equation.
基金The project supported by National Natural Science Foundation of China under Grant No.10101025
文摘In this article, we study the Lax pairs of -dimensional equation: the modified generalized dispersive long wave (MGDLW) equation. Based on the well-known binary Darboux transformation, we dig out the recursion formulas of the first part of the Lax pairs. Then by further discussion and doing some revisional work, we make the recursion formulas fit for the second part of Lax pairs. At last, some solutions to the MGDLW equation are worked out by using the recursion formula.
基金National Natural Science Foundation of China under Grant Nos.10371070 and 10671121the Foundation of Shanghai Education Committee for Shanghai Prospective Excellent Young Teachers
文摘In the paper we discuss the Wronskian solutions of modified Korteweg-de Vries equation (mKdV) via the Backlund transformation (BT) and a generalized Wronskian condition is given, which allows us to substitute an arbitrary coefficient matrix in the GN (t) for the original diagonal one.
基金Foundation item: Supported by the National Natural Science Foundation of China(10671182) Supported by the Foundation and Frontier Technology Research of Henan(082300410060)
文摘In this paper, we present a solution methodology to obtain exact solutions of some nonlinear evolution equation by modifying the homogeneous balance method. Based on the modified homogeneous balance method, several kinds of exact(new) solutions of the generalized KdV equation are obtained.
基金Supported by the National Natural Science Foundation of China under Grant No. 10735030Shanghai Leading Academic Discipline Project under Grant No. B412+2 种基金National Natural Science Foundation of China under Grant No. 90718041Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT0734K.C. Wong Magna Fund in Ningbo University
文摘In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmethod proposed by Lou [J. Phys. A: Math. Gen. 38 (2005) L129], more general symmetry groups are obtained andthe relationship between the new solution and known solution is set up. At the same time, the Lie symmetry groupsobtained are only special cases of the more general symmetry groups. At last, some exact solutions of GSS equationsare constructed by the relationship obtained in the paper between the new solution and known solution.
基金Project supported by the State Key Program for Basic Research of China (Grant No 2004CB418304)the National Natural Science Foundation of China (Grant No 40405010)
文摘By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.
基金supported by NNSFC under grant numbers 10771074 and 11171116supported in part by NNSFC under grant number 10801055+1 种基金the Doctoral Program of NEM of China under grant number 200805611026supported in part by the Fundamental Research Funds for the Central Universities under the grant number 2012ZZ0072
文摘In this article, we consider the Cauchy problems for the modified Kawahara equationδtu+μδx(u3)+αδx5u+βδx3u+γδxu=0 and the Kaup-Kupershmidt equation δtu+μuδx2u+αδx5u+βδx3u+βδx3u+γδxu=0Using the general well-posedness principle introduced by I. Bejenaru and T. Tao, we prove 1 that the modified Kawahara equation is ill-posed for the initial data in H8 (It) with s 〈 - and that the Kaup-Kupershmidt equation is ill-posed for the initial data in HS(It) with s〈0.
文摘New two-component vector breather solution of the modified Benjamin-Bona-Mahony(MBBM)equation is considered.Using the generalized perturbation reduction method,the MBBM equation is reduced to the coupled nonlinear Schr¨odinger equations for auxiliary functions.Explicit analytical expressions for the profile and parameters of the vector breather oscillating with the sum and difference of the frequencies and wavenumbers are presented.The two-component vector breather and single-component scalar breather of the MBBM equation is compared.
文摘In this paper, we investigate some new traveling wave solutions to Vakhnenko-Parkes equation via three modified mathematical methods. The derived solutions have been obtained including periodic and solitons solutions in the form of trigonometric, hyperbolic, and rational function solutions. The graphical representations of some solutions by assigning particular values to the parameters under prescribed conditions in each solutions and comparing of solutions with those gained by other authors indicate that these employed techniques are more effective, efficient and applicable mathematical tools for solving nonlinear problems in applied science.
文摘Approximate bound state solutions of spinless particles with a special case of equal scalar and vector modified generalized Hulthen potential has been obtained under the massive Klein-Gordon equation. The energy eigenvalues and the corresponding wave functions expressed in terms of a Jacobi polynomial are also obtained using the parametric generalization of the Nikiforov-Uvarov (NU) method. Under limiting cases our result are in agreement with the existing literature. Our results could be used to study the interactions and binding energies of the central potential for diatomic molecules in the relativistic framework which have many applications in physics and some others related disciplines.
基金Project supported by the National Natural Science Foundation of China (No. 60874039)Shanghai Leading Academic Discipline Project (No. J50101)
文摘A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed, and a corresponding optimal error estimate in L^2-norm is obtained. It improves the result presented by Maday and Quarteroni. A modified Fourier pseudospectral method is also presented, with the same convergence properties as the Fourier spectral method.
文摘In this paper,we obtained the topological soliton solution of the(1+1)-dimensional generalized modified Benjamin-Bona-Mahony equation and shock wave solution of the generalized Boussinesq equation.We get that solutions by using solitary wave ansatz in terms of tanh^(p) functions.The velocity and the free parameters are the physical parameters in the soliton solutions.They can be obtained as functions of the dependent model coefficients.The domain restriction were also identified in the process.we hope that in nonlinear dynamical system these solutions will be explain some nonlinear physical phenomena.
基金Supported by the Shanghai Leading Academic Discipline Project(No.T0502)the Science Foundation of the Education Commission of Shanghai(No.07ZZ83).
文摘By means of the undetermined assumption method, we obtain some new exact solitary-wave solutions with hyperbolic secant function fractional form and periodic wave solutions with cosine function form for the generalized modified Boussinesq equation. We also discuss the boundedness of these solutions. More over, we study the correlative characteristic of the solitary-wave solutions and the periodic wave solutions along with the travelling wave velocity's variation.
基金The author would like to thank the Deanship of Scientific Re-search,Majmaah University,Saudi Arabia,for funding this work under project No.R-2021-222.
文摘In this study,the generalized modified variable-coefficient KdV equation with external-force term(gvcmKdV)describing atmospheric blocking located in the mid-high latitudes over ocean is studied for integrability property by using consistent Riccati expansion solvability and the necessary integrability conditions between the function coefficients are obtained.Moreover,several new solutions have been constructed for the gvcmKdV.Additionally,the classical direct similarity reduction method is used to re-duce the gvcmKdV to a nonlinear ordinary differential equation.Building on the solutions given in the previous literature for the reduced equation,many novel solitary and periodic wave solutions have been obtained for the gvcmKdV.
文摘In this paper, we study an elliptic equation with four distinct real roots and obtain five new solutions to this type of elliptic equation. Using these obtained new elliptic function solutions we can construct a series of explicit exact solutions for many nonlinear evolution equations. As examples, we choose combined KdV-MKdV equation, a fourth-order integrable nonlinear Schrödinger equation and generalized Dullin-Gottwald-Holm equation to demonstrate the effectiveness of these new elliptic function solutions. These new elliptic function solutions can be applied to many other nonlinear evolution equations.
文摘We have utilized three novel methods,called generalized direct algebraic,modified F-expansion and improved simple equation methods to construct traveling wave solutions of the system of shallow water wave equations and modified Benjamin-Bona-Mahony equation.After substituting particular values of the parameters,different solitary wave solutions are derived from the exact traveling wave solutions.It is shown that these employed methods are more powerful tools for nonlinear wave equations.
基金The authors would like to thank the anonymous referees for their useful comments and valuable suggestions.
文摘In this study,we prove that modified diffusion equations,including the generalized Burgers'equation with variable coefficients,can be derived from the Black-Scholes equation with a time-dependent parameter based on the propagator method known in quantum and statistical physics.The extension for the case of a local fractal derivative is also addressed and analyzed.