期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于GMKL-SVM的模拟电路故障诊断方法 被引量:26
1
作者 张朝龙 何怡刚 +2 位作者 袁莉芬 李志刚 项胜 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第9期1989-1995,共7页
提出了一种新颖的基于广义多核支持向量机(GMKL-SVM)的模拟电路故障诊断方法。首先,应用Haar小波分析提取被测电路时域响应信号的小波系数作为特征参量,并生成样本数据;然后,基于样本数据,应用量子粒子群算法对GMKL-SVM的参数进行优化,... 提出了一种新颖的基于广义多核支持向量机(GMKL-SVM)的模拟电路故障诊断方法。首先,应用Haar小波分析提取被测电路时域响应信号的小波系数作为特征参量,并生成样本数据;然后,基于样本数据,应用量子粒子群算法对GMKL-SVM的参数进行优化,并以此建立基于GMKL-SVM的故障诊断模型,用于区分模拟电路的各个故障。实例电路的单故障和双故障诊断实验结果表明,所提出的GMKL-SVM方法能较好地实现模拟电路故障诊断,与传统的GMKL-SVM方法相比,表现出了更好的性能,获得了更高的故障诊断正确率。 展开更多
关键词 模拟电路 故障诊断 小波变换 广义多核支持向量机 量子粒子群算法
下载PDF
基于KLCCF和SPG-GMKL的财务危机预警模型 被引量:2
2
作者 余清清 曾健民 林德贵 《计算机与数字工程》 2015年第12期2209-2214,2242,共7页
财务危机预警至今仍是数据挖掘领域的研究热点,为了有效解决异构高维财务数据的挖掘,论文提出一种新的财务数据预测模型。此模型是在核局部一致的概念分解(KLCCF)的降维基础上构建广义多核学习(GMKL)分类模型。该模型很好地解决了复杂... 财务危机预警至今仍是数据挖掘领域的研究热点,为了有效解决异构高维财务数据的挖掘,论文提出一种新的财务数据预测模型。此模型是在核局部一致的概念分解(KLCCF)的降维基础上构建广义多核学习(GMKL)分类模型。该模型很好地解决了复杂、高维、非线性的财务数据的分类问题,进而用于准确地预测财务困境。首先,核局部一致的概念分解较好地将高维非线性流形数据进行降维,得到有效的特征集,充分地展现数据流本质的几何结构。其次,谱投影梯度法(SPG)在步长设置上考虑二次信息,采用非单调步长选择准则减少评估函数的次数,它对梯度噪音具有较好的鲁棒性,进一步优化广义多核学习(GMKL)模型。最后,实验显示基于KLCCF的SPG-GMKL分类模型优于SVM分类器,具有较高的分类准确性,有效地解决了高维异构财务数据的分类问题。 展开更多
关键词 数据挖掘 广义多核学习 局部一致概念分解 流形学习 财务预警
下载PDF
基于测量阻抗动态轨迹的大型调相机失磁保护
3
作者 陈晓强 康纪良 +2 位作者 刘超 曹明宣 肖仕武 《电力工程技术》 北大核心 2024年第2期218-228,共11页
大型调相机失磁故障严重影响设备本体安全以及电网稳定,现有基于静态阈值的低电压与无功反向判据可靠性与选择性不足。文中提出一种可反映调相机运行状态的机端测量阻抗全局动态轨迹智能识别的失磁保护原理,从运动学角度建立能够准确反... 大型调相机失磁故障严重影响设备本体安全以及电网稳定,现有基于静态阈值的低电压与无功反向判据可靠性与选择性不足。文中提出一种可反映调相机运行状态的机端测量阻抗全局动态轨迹智能识别的失磁保护原理,从运动学角度建立能够准确反映失磁与其他工况下测量阻抗轨迹的特征量时间序列,基于统计学提取解释性强的特征量。利用自适应权重的全局与局部核函数组合训练多核支持向量机(multiple kernel learning support vector machine,MKL-SVM),在保证模型学习能力的同时增强其泛化能力;提出基于分类核空间距离的两阶段识别策略,可在保证可靠性的前提下提高保护速动性。基于PSCAD仿真平台搭建调相机接入电网模型进行验证,结果表明所提失磁保护方案无须采集转子侧电气量,识别准确,面对新能源接入和未知扰动时仍具有优良的适用性。 展开更多
关键词 调相机 失磁保护 测量阻抗轨迹 多核支持向量机(MKL-SVM) 两阶段识别 泛化能力
下载PDF
基于多核学习的商品图像句子标注 被引量:2
4
作者 张红斌 姬东鸿 +1 位作者 任亚峰 尹兰 《计算机科学与探索》 CSCD 北大核心 2015年第11期1351-1361,共11页
句子蕴含丰富的语义信息,为商品图像标注句子能准确刻画商品特性,并改善信息检索准确率。现有商品图像句子标注方法存在特征学习不充分、特征表现单一等问题,针对这些问题,提出了基于高效匹配核(efficient match kernels,EMK)进行特征学... 句子蕴含丰富的语义信息,为商品图像标注句子能准确刻画商品特性,并改善信息检索准确率。现有商品图像句子标注方法存在特征学习不充分、特征表现单一等问题,针对这些问题,提出了基于高效匹配核(efficient match kernels,EMK)进行特征学习,抽取判别性能更优的形状核特征来刻画商品图像,并综合图像的形状、纹理、梯度等特征,在多核学习模型内融合出多核特征(multiple kernel feature,MKF),丰富特征表现形式,更好地解释图像中的形状和纹理视觉特性。基于MKF完成图像分类,检索关键文本标注商品图像。实验表明,MKF获取了最优的图像分类准确率,并且具有鲜明纹理或形状特性的商品图像,其MAP(mean average precision)指标更优。另据BLEU(bilingual evaluation understudy)评分显示,所标句子包含的语义信息贴近商品图像内容,且它的连贯性、可读性更好,具有很高的实用价值。 展开更多
关键词 多核学习 高效匹配核 商品图像 句子标注 自然语言生成
下载PDF
基于多核学习的静态图像人体行为识别方法 被引量:4
5
作者 杨红菊 冯进丽 郭倩 《数据采集与处理》 CSCD 北大核心 2016年第5期958-964,共7页
提出一种基于广义性多核学习的静态图像人体行为识别方法。从图像中提取基于边缘的梯度方向直方图和基于稠密采样的尺度不变特征描述子,并使用空间金字塔模型加入粗略空间信息;运用直方图内交核函数计算金字塔模型各层核矩阵,通过广义... 提出一种基于广义性多核学习的静态图像人体行为识别方法。从图像中提取基于边缘的梯度方向直方图和基于稠密采样的尺度不变特征描述子,并使用空间金字塔模型加入粗略空间信息;运用直方图内交核函数计算金字塔模型各层核矩阵,通过广义性多核学习方法求解各个核矩阵权重,以线性组合方式得到最优核矩阵;最后利用多核学习决策函数进行行为识别。Willow-actions数据集实验结果表明,本文方法比其他几种方法更加有效。 展开更多
关键词 行为识别 广义性多核学习 空间金字塔模型 直方图内交核函数
下载PDF
基于测量阻抗变化轨迹智能识别的水轮发电机失磁保护 被引量:3
6
作者 刘超 肖仕武 《电工技术学报》 EI CSCD 北大核心 2023年第7期1808-1825,共18页
大型水轮发电机传统失磁保护无法反映复杂电网环境下各种扰动测量阻抗的变化,难以同时满足选择性和速动性。该文提出一种基于测量阻抗动态轨迹识别的数据驱动型失磁保护新方案,首先分析了蕴含大量系统运行信息的机端测量阻抗动态轨迹时... 大型水轮发电机传统失磁保护无法反映复杂电网环境下各种扰动测量阻抗的变化,难以同时满足选择性和速动性。该文提出一种基于测量阻抗动态轨迹识别的数据驱动型失磁保护新方案,首先分析了蕴含大量系统运行信息的机端测量阻抗动态轨迹时序运动特征,从数据驱动的角度引入统计学描述轨迹时序特征分布,并利用最大相关-最小冗余算法(mRMR)提取关键特征以增强解释性。在此基础上构建兼顾全局与局部信息的多核支持向量机(MKLSVM)模型以提升模型的泛化能力,依据先验知识提出基于分类函数距离的双时窗判别原理以提高可靠性。通过简化等效水轮机输电系统和考虑不同电源接入的扩展系统对所提方案进行仿真验证,结果表明,保护方案在保证选择性的同时提高了速动性,并且在面对电网发生复杂变化时仍具有优良的适应能力。 展开更多
关键词 水轮发电机 失磁保护 阻抗轨迹 多核支持向量机 智能识别 泛化能力
下载PDF
基于l_p-范数约束的LSSVR多核学习算法 被引量:5
7
作者 李琦 李晓航 +1 位作者 邢丽萍 邵诚 《控制与决策》 EI CSCD 北大核心 2015年第9期1603-1608,共6页
针对核函数选择对最小二乘支持向量机回归模型泛化性的影响,提出一种新的基于l_p-范数约束的最小二乘支持向量机多核学习算法.该算法提供了两种求解方法,均通过两重循环进行求解,外循环用于更新核函数的权值,内循环用于求解最小二乘支... 针对核函数选择对最小二乘支持向量机回归模型泛化性的影响,提出一种新的基于l_p-范数约束的最小二乘支持向量机多核学习算法.该算法提供了两种求解方法,均通过两重循环进行求解,外循环用于更新核函数的权值,内循环用于求解最小二乘支持向量机的拉格朗日乘数,充分利用该多核学习算法,有效提高了最小二乘支持向量机的泛化能力,而且对惩罚参数的选择具有较强的鲁棒性.基于单变量和多变量函数的仿真实验表明了所提出算法的有效性. 展开更多
关键词 最小二乘支持向量机 lp-范数 多核学习 泛化性
原文传递
基于支持向量机泛化误差界的多核学习方法 被引量:3
8
作者 刘勇 廖士中 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2012年第2期149-156,共8页
基于支持向量机(SVM)泛化误差界,提出了一种精确且有效的多核学习方法.首先,应用SVM泛化误差界推导多核学习优化形式,并给出求解其目标函数微分的计算公式.然后,设计高效的迭代算法来求解该优化问题.最后,分析了算法的时间复杂度,并基于... 基于支持向量机(SVM)泛化误差界,提出了一种精确且有效的多核学习方法.首先,应用SVM泛化误差界推导多核学习优化形式,并给出求解其目标函数微分的计算公式.然后,设计高效的迭代算法来求解该优化问题.最后,分析了算法的时间复杂度,并基于Rademacher复杂度给出了算法的泛化误差界,该泛化界在基核个数很大时依然有效.在标准数据集上的实验表明,相对于一致组合方法以及当前流行的单核和多核学习方法,所提出的方法具有较高的准确率. 展开更多
关键词 多核学习 泛化误差界 半径间隔界 张成界
原文传递
基于核特征的商品图像句子标注
9
作者 张红斌 姬东鸿 +1 位作者 任亚峰 尹兰 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2017年第1期137-145,共9页
用单词标注图像会产生歧义或噪声,故采用句子标注商品图像,以准确刻画商品特性.现有商品图像句子标注方法存在特征学习不充分的问题,针对该问题,提出基于核特征模型抽取图像的形状、颜色和梯度3种核特征,并在多核学习模型内融合生成新特... 用单词标注图像会产生歧义或噪声,故采用句子标注商品图像,以准确刻画商品特性.现有商品图像句子标注方法存在特征学习不充分的问题,针对该问题,提出基于核特征模型抽取图像的形状、颜色和梯度3种核特征,并在多核学习模型内融合生成新特征,基于新特征完成商品图像分类,检索视觉相似的训练图像,摘录其标题中的关键文本标注商品图像.最后,从信息检索和机器翻译两个角度分别评价标注性能.实验表明:基于新特征能获取最优的商品图像分类性能,图像分类缩小了图像检索范围,有助于改善检索性能;标注模型的MAP(Mean Average Precision)值和P-R(Precision-Recall)指标均优于基线;所标句子与图像内容语义相关,且连贯性和流畅性更优. 展开更多
关键词 核特征 多核学习 商品图像 句子标注 自然语言生成
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部