The generalized self-consistent finite-element iterative averaging method was adopted to analyze the elasto-plastic tensile properties of SiC whiskers reinforced aluminum matrix composites. The effects of varying fibe...The generalized self-consistent finite-element iterative averaging method was adopted to analyze the elasto-plastic tensile properties of SiC whiskers reinforced aluminum matrix composites. The effects of varying fiber's aspect ratio and volume fraction on the macroscopic elasto-plastic deformation of the composites were studied. By the analysis of microscopic stress fields, the relation between the propagation of the elasto-plastic region in the matrix and the macroscopic elasto-plastic deformation of composites was discussed. It was found that the propagation of the plastic region in the matrix between the fiber's ends would affect prominently the elasto-plastic tensile behaviour of the composites. It was shown that the characterization of the stress-strain response in terms of the 0.2% offset yield strength is incomplete.展开更多
基金Supported by the Key Project of the Natural Science Foundation of China
文摘The generalized self-consistent finite-element iterative averaging method was adopted to analyze the elasto-plastic tensile properties of SiC whiskers reinforced aluminum matrix composites. The effects of varying fiber's aspect ratio and volume fraction on the macroscopic elasto-plastic deformation of the composites were studied. By the analysis of microscopic stress fields, the relation between the propagation of the elasto-plastic region in the matrix and the macroscopic elasto-plastic deformation of composites was discussed. It was found that the propagation of the plastic region in the matrix between the fiber's ends would affect prominently the elasto-plastic tensile behaviour of the composites. It was shown that the characterization of the stress-strain response in terms of the 0.2% offset yield strength is incomplete.