In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power su...In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method.展开更多
Total variation (TV) is widely applied in image process-ing. The assumption of TV is that an image consists of piecewise constants, however, it suffers from the so-cal ed staircase effect. In order to reduce the sta...Total variation (TV) is widely applied in image process-ing. The assumption of TV is that an image consists of piecewise constants, however, it suffers from the so-cal ed staircase effect. In order to reduce the staircase effect and preserve the edges when textures of image are extracted, a new image decomposition model is proposed in this paper. The proposed model is based on the to-tal generalized variation method which involves and balances the higher order of the structure. We also derive a numerical algorithm based on a primal-dual formulation that can be effectively imple-mented. Numerical experiments show that the proposed method can achieve a better trade-off between noise removal and texture extraction, while avoiding the staircase effect efficiently.展开更多
The hydraulic fracturing is a nonlinear,fluid-solid coupling and transient problem,in most cases it is always time-consuming to simulate this process numerically.In recent years,although many numerical methods were pr...The hydraulic fracturing is a nonlinear,fluid-solid coupling and transient problem,in most cases it is always time-consuming to simulate this process numerically.In recent years,although many numerical methods were proposed to settle this problem,most of them still require a large amount of computer resources.Thus it is a high demand to develop more efficient numerical approaches to achieve the real-time monitoring of the fracture geometry during the hydraulic fracturing treatment.In this study,a reduced order modeling technique namely Proper Generalized Decomposition(PGD),is applied to accelerate the simulations of the transient,non-linear coupled system of hydraulic fracturing problem,to match this extremely tight response time constraint.The separability of the solution in space and time dimensions is studied for a simplified model problem.The solid and fluid equations are coupled explicitly by inverting the solid discrete problem,and a simple iterative procedure to handle the non-linear characteristic of the hydraulic fracturing problem is proposed in this work.Numeral validation illustrates that the results of PGD match well with these of standard finite element method in terms o f fracture opening and fluid pressure in the hydro-fracture.Moreover,after the off-line calculations,the numerical results can be obtained in real time.展开更多
In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are est...In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are established by a singular value decomposition of a matrix with dimensions n × (n + pr). The algorithm proposed in this paper for the euqation AX - XF = BY does not require the controllability of matrix pair (A, B) and the restriction that A, F do not have common eigenvalues. Since singular value decomposition is adopted, the algorithm is numerically stable and may provide great convenience to the computation of the solution to these equations, and can perform important functions in many design problems in control systems theory.展开更多
In this paper we derive a practical method of solving simultaneously the problem of Schmidt decomposition of quaternion matrix and the orthonormalization of vectors in a generalized unitary space by using elementary c...In this paper we derive a practical method of solving simultaneously the problem of Schmidt decomposition of quaternion matrix and the orthonormalization of vectors in a generalized unitary space by using elementary column operations on matrices over the quaternion field.展开更多
A mathematical model is elaborated for a thermoelastic infinite body with a spherical cavity.A generalized set of governing equations is formulated in the context of three different models of thermoelasticity:the Biot...A mathematical model is elaborated for a thermoelastic infinite body with a spherical cavity.A generalized set of governing equations is formulated in the context of three different models of thermoelasticity:the Biot model,also known as“coupled thermoelasticity”model;the Lord-Shulman model,also referred to as“generalized thermoelasticity with one-relaxation time”approach;and the Green-Lindsay model,also called“generalized thermoelasticity with two-relaxation times”approach.The Adomian’s decomposition method is used to solve the related mathematical problem.The bounding plane of the cavity is subjected to harmonic thermal loading with zero heat flux and strain.Numerical results for the temperature,radial stress,strain,and displacement are represented graphically.It is shown that the angular thermal load and the relaxation times have significant effects on all the studied fields.展开更多
The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material...The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material level measurement.A new method for detecting and correcting the material level signal is proposed,which is based on the generalized S-transform and singular value decomposition(GST-SVD).In this project,the change of material level is regarded as the low speed moving target.First,the generalized S-transform is performed on the echo signals.During the transformation process,the variation trend of window of the generalized S-transform is adjusted according to the frequency distribution characteristics of the material level echo signal,achieving the purpose of detecting the signal.Secondly,the SVD is used to reconstruct the time-frequency coefficient matrix.At last,the reconstructed time-frequency matrix performs an inverse transform.The experimental results show that the method can accurately detect the material level echo signal,and it can reserve the detailed characteristics of the signal while suppressing the noise,and reduce the false echo interference.Compared with other methods,the material level measurement error does not exceed 4.01%,and the material level measurement accuracy can reach 0.40%F.S.展开更多
The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memo...The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memory requirement when the scale of the matrices is quite large.In this paper,we use random projections to capture the most of the action of the matrices and propose randomized algorithms for computing a low-rank approximation of the GSVD.Serval error bounds of the approximation are also presented for the proposed randomized algorithms.Finally,some experimental results show that the proposed randomized algorithms can achieve a good accuracy with less computational cost and storage requirement.展开更多
The Domain Decomposition Method(DDM) is a powerful approach to solving maily types of PDE's. DDM is especially suitable for massively Parallel computers. In the past, most research on DDM has focused on the domain...The Domain Decomposition Method(DDM) is a powerful approach to solving maily types of PDE's. DDM is especially suitable for massively Parallel computers. In the past, most research on DDM has focused on the domain splitting technique. In this paper. we focus our attention on use of a combination of techniques to solve each subproblem. The central question with DDM is that of how to doal with the pseodoboundary conditions. Here, we introduce a set of operators which act on the pseudo-boundaries in the solution process, referring to this new. procedure as the 'Generalized Domain Decomposition A.Jlethod(GDDM).' We have already obtained convergence factors for GDDM with certain classes of PDE's. These ctonvergence factors show that we can derive exact solutions of the whole problem for certain types of PDE's, and can get superior speed of convergence for other types.展开更多
This paper presents a generalization of the authors' earlier work. In this paper, the two concepts, generic regular decomposition (GRD) and regular-decomposition-unstable (RDU) variety introduced in the authors'...This paper presents a generalization of the authors' earlier work. In this paper, the two concepts, generic regular decomposition (GRD) and regular-decomposition-unstable (RDU) variety introduced in the authors' previous work for generic zero-dimensional systems, are extended to the case where the parametric systems are not necessarily zero-dimensional. An algorithm is provided to compute GRDs and the associated RDU varieties of parametric systems simultaneously on the basis of the algorithm for generic zero-dimensional systems proposed in the authors' previous work. Then the solutions of any parametric system can be represented by the solutions of finitely many regular systems and the decomposition is stable at any parameter value in the complement of the associated RDU variety of the parameter space. The related definitions and the results presented in the authors' previous work are also generalized and a further discussion on RDU varieties is given from an experimental point of view. The new algorithm has been implemented on the basis of DISCOVERER with Maple 16 and experimented with a number of benchmarks from the literature.展开更多
A method was developed for the determination of total arsenic concentration in less than ng/ml level by decomposition of organoarsenicals using photo -oxidation combined with in situ trapping of arsenic hydride on a p...A method was developed for the determination of total arsenic concentration in less than ng/ml level by decomposition of organoarsenicals using photo -oxidation combined with in situ trapping of arsenic hydride on a palladium coated graphite tube with subsequent atomization and detection by AAS. The organoarsenicals include monomethylarsenic, dimethylarsenic, arsenobetaine, arsenocholine, o -aminobenzenarsenate and p -aminobenzenarsenate. The method is simple and sensitive. Detection limit was obtained from different arsenic compounds over the range from 0. 058 to 0.063 ng/ml as As (based on three times of the standard deviation of 10 blank measurements) and the relative standard deviations for ten replicate measurements were from 2.0 to 3.8%. The calibration curves of arsenic compounds including inorganic and organic arsenicals were linear over the range from 0.1 to 3.0 ng/ml as As. The recommended method has been applied to the determination of total arsenic in tap and lake water samples at ng/ml levels.展开更多
Source-generated noise, such as air, refracted, guided waves, near-surface multiples, and radial ground roll, is one of the most challenging problems in the land seismic method. The interference of the noise with refl...Source-generated noise, such as air, refracted, guided waves, near-surface multiples, and radial ground roll, is one of the most challenging problems in the land seismic method. The interference of the noise with reflection events often results in a distorted representation of the subsurface and gives rise to interpretation uncertainties. To suppress the noise, geophysicists have devised various techniques in both acquisition and processing stages. Conventional processing methods, such as high-pass, f - k and hyperbolic velocity filters, however, have certain disadvantages when handling actual seismic data. In this study, we present a new hybrid method combining singular value decomposition (SVD) with a special linear transformation of the common-shot gather. The method is aimed at effectively removing the noise while minimizing harm to the signal. As compared with other methods, the SVD-based one gives a denser approximation to source-generated noise before its subtraction from the seismic data, due to the use of more appropriate basis functions. The special transformation applied in advance to the data is intended to align the source-generated noise events horizontally and thus to benefit the subsequent SVD. The effectiveness of the method in suppressing source-generated noise is demonstrated with a synthetic data set. Emphasis is put on the comparison of the performance of the method with that of conventional f - k filtering.展开更多
Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors...Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations.展开更多
This paper is sequel to the authors paper [18]. By using the generalized Burchnall-Chaundy operator method, the authors are aiming at deriving certain decomposition formulas for some interesting special cases of Kampe...This paper is sequel to the authors paper [18]. By using the generalized Burchnall-Chaundy operator method, the authors are aiming at deriving certain decomposition formulas for some interesting special cases of Kampe de Feriets series of double hypergeometric series F;.展开更多
A class of normal-like derivatives for functions with low regularity defined on Lipschitz domains are introduced and studied.It is shown that the new normal-like derivatives,which are called the generalized normal der...A class of normal-like derivatives for functions with low regularity defined on Lipschitz domains are introduced and studied.It is shown that the new normal-like derivatives,which are called the generalized normal derivatives,preserve the major prop- erties of the existing standard normal derivatives.The generalized normal derivatives are then applied to analyze the convergence of domain decomposition methods (DDMs) with nonmatching grids and discontinuous Galerkin (DG) methods for second-order el- liptic problems.The approximate solutions generated by these methods still possess the optimal energy-norm error estimates,even if the exact solutions to the underlying elliptic problems admit very low regularities.展开更多
This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fa...This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fault,the sta-tor vibration signal analysis based on ACMD(adaptive chirp mode decomposition)and DEO3S(demodulation energy operator of symmetrical differencing)was adopted to extract the fault feature.Firstly,FT(Fourier trans-form)is applied to the vibration signal to obtain the instantaneous frequency,and PE(permutation entropy)is calculated to select the proper weighting coefficients.Then,the signal is decomposed by ACMD,with the instan-taneous frequency and weighting coefficient acquired in the former step to obtain the optimal mode.Finally,DEO3S is operated to get the envelope spectrum which is able to strengthen the characteristic frequencies of the stator inter-turn short circuit fault.The study on the simulating signal and the real experiment data indicates the effectiveness of the proposed method for the stator inter-turn short circuit fault in synchronous generators.In addition,the comparison with other methods shows the superiority of the proposed model.展开更多
Results on the composite generalized Laguerre-Legendre interpolation in unbounded domains are established. As an application,a composite Laguerre-Legendre pseudospectral scheme is presented for nonlinear Fokker-Planck...Results on the composite generalized Laguerre-Legendre interpolation in unbounded domains are established. As an application,a composite Laguerre-Legendre pseudospectral scheme is presented for nonlinear Fokker-Planck equations on the whole line. The convergence and the stability of the proposed scheme are proved. Numerical results show the efficiency of the scheme and conform well to theoretical analysis.展开更多
This paper deals with the boundary control problem of the unforced generalized Burgers-Huxley equation with high order nonlinearity when the spatial domain is [0, 1]. We show that this type of equations are globally e...This paper deals with the boundary control problem of the unforced generalized Burgers-Huxley equation with high order nonlinearity when the spatial domain is [0, 1]. We show that this type of equations are globally exponential stable in L<sup>2</sup> [0, 1] under zero Dirichlet boundary conditions. We use an adaptive nonlinear boundary controller to show the convergence of the solution to the trivial solution and to show that it achieves global asymptotic stability in time. We introduce numerical simulation for the controlled equation using the Adomian decomposition method (ADM) in order to illustrate the performance of the controller.展开更多
Many kinds of electrical equipment are used in civil and building engineering.The motor is one of the main power components of this electrical equipment,which can provide stable power output.During the long-term use o...Many kinds of electrical equipment are used in civil and building engineering.The motor is one of the main power components of this electrical equipment,which can provide stable power output.During the long-term use of motors,various motor faults may occur,which affects the normal use of electrical equipment and even causes accidents.It is significant to apply fault diagnosis for the motors at the construction site.Aiming at the problem that signal data of faulty motor lack diversity,this research designs a multi-layer perceptron Wasserstein generative adversarial network,which is used to enhance training data through distribution fusion.A discrete wavelet decomposition algorithm is employed to extract the low-frequency wavelet coefficients from the original motor current signals.These are used to train themulti-layer perceptron Wasserstein generative adversarial model.Then,the trainedmodel is applied to generate fake current wavelet coefficients with the fused distribution.A motor fault classification model consisting of a feature extractor and pattern recognizer is built based on perceptron.The data augmentation experiment shows that the fake dataset has a larger distribution than the real dataset.The classification model trained on a real dataset,fake dataset and combined dataset achieves 21.5%,87.2%,and 90.1%prediction accuracy on the unseen real data,respectively.The results indicate that the proposed data augmentation method can effectively generate fake data with the fused distribution.The motor fault classification model trained on a fake dataset has better generalization performance than that trained on a real dataset.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.62063016).
文摘In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method.
基金supported by the National Natural Science Foundation of China(6127129461301229)+1 种基金the Doctoral Research Fund of Henan University of Science and Technology(0900170809001751)
文摘Total variation (TV) is widely applied in image process-ing. The assumption of TV is that an image consists of piecewise constants, however, it suffers from the so-cal ed staircase effect. In order to reduce the staircase effect and preserve the edges when textures of image are extracted, a new image decomposition model is proposed in this paper. The proposed model is based on the to-tal generalized variation method which involves and balances the higher order of the structure. We also derive a numerical algorithm based on a primal-dual formulation that can be effectively imple-mented. Numerical experiments show that the proposed method can achieve a better trade-off between noise removal and texture extraction, while avoiding the staircase effect efficiently.
基金the National Science Foundation of China(Grant Nos.51804033 and 51936001)China Postdoctoral Science and Foundation(Grant No.2018M641254)+3 种基金Beijing Postdoctoral Research Foundation(2018-ZZ-045)the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality(Grant No.IDHT20170507)Program of Great Wall Scholar(Grant No.CIT&TCD20180313)Jointly Projects of Beijing Natural Science Foundation and Beijing Municipal Education Commission(Grant No.KZ201810017023).
文摘The hydraulic fracturing is a nonlinear,fluid-solid coupling and transient problem,in most cases it is always time-consuming to simulate this process numerically.In recent years,although many numerical methods were proposed to settle this problem,most of them still require a large amount of computer resources.Thus it is a high demand to develop more efficient numerical approaches to achieve the real-time monitoring of the fracture geometry during the hydraulic fracturing treatment.In this study,a reduced order modeling technique namely Proper Generalized Decomposition(PGD),is applied to accelerate the simulations of the transient,non-linear coupled system of hydraulic fracturing problem,to match this extremely tight response time constraint.The separability of the solution in space and time dimensions is studied for a simplified model problem.The solid and fluid equations are coupled explicitly by inverting the solid discrete problem,and a simple iterative procedure to handle the non-linear characteristic of the hydraulic fracturing problem is proposed in this work.Numeral validation illustrates that the results of PGD match well with these of standard finite element method in terms o f fracture opening and fluid pressure in the hydro-fracture.Moreover,after the off-line calculations,the numerical results can be obtained in real time.
基金This work was supported by the Chinese Outstanding Youth Foundation(No.69925308)Program for Changjiang Scholars and Innovative ResearchTeam in University.
文摘In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are established by a singular value decomposition of a matrix with dimensions n × (n + pr). The algorithm proposed in this paper for the euqation AX - XF = BY does not require the controllability of matrix pair (A, B) and the restriction that A, F do not have common eigenvalues. Since singular value decomposition is adopted, the algorithm is numerically stable and may provide great convenience to the computation of the solution to these equations, and can perform important functions in many design problems in control systems theory.
文摘In this paper we derive a practical method of solving simultaneously the problem of Schmidt decomposition of quaternion matrix and the orthonormalization of vectors in a generalized unitary space by using elementary column operations on matrices over the quaternion field.
文摘A mathematical model is elaborated for a thermoelastic infinite body with a spherical cavity.A generalized set of governing equations is formulated in the context of three different models of thermoelasticity:the Biot model,also known as“coupled thermoelasticity”model;the Lord-Shulman model,also referred to as“generalized thermoelasticity with one-relaxation time”approach;and the Green-Lindsay model,also called“generalized thermoelasticity with two-relaxation times”approach.The Adomian’s decomposition method is used to solve the related mathematical problem.The bounding plane of the cavity is subjected to harmonic thermal loading with zero heat flux and strain.Numerical results for the temperature,radial stress,strain,and displacement are represented graphically.It is shown that the angular thermal load and the relaxation times have significant effects on all the studied fields.
基金National Natural Science Foundation of China(No.61761027)。
文摘The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material level measurement.A new method for detecting and correcting the material level signal is proposed,which is based on the generalized S-transform and singular value decomposition(GST-SVD).In this project,the change of material level is regarded as the low speed moving target.First,the generalized S-transform is performed on the echo signals.During the transformation process,the variation trend of window of the generalized S-transform is adjusted according to the frequency distribution characteristics of the material level echo signal,achieving the purpose of detecting the signal.Secondly,the SVD is used to reconstruct the time-frequency coefficient matrix.At last,the reconstructed time-frequency matrix performs an inverse transform.The experimental results show that the method can accurately detect the material level echo signal,and it can reserve the detailed characteristics of the signal while suppressing the noise,and reduce the false echo interference.Compared with other methods,the material level measurement error does not exceed 4.01%,and the material level measurement accuracy can reach 0.40%F.S.
基金The research is supported by the National Natural Science Foundation of China under Grant nos.11701409 and 11571171the Natural Science Foundation of Jiangsu Province of China under Grant BK20170591the Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant 17KJB110018.
文摘The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memory requirement when the scale of the matrices is quite large.In this paper,we use random projections to capture the most of the action of the matrices and propose randomized algorithms for computing a low-rank approximation of the GSVD.Serval error bounds of the approximation are also presented for the proposed randomized algorithms.Finally,some experimental results show that the proposed randomized algorithms can achieve a good accuracy with less computational cost and storage requirement.
文摘The Domain Decomposition Method(DDM) is a powerful approach to solving maily types of PDE's. DDM is especially suitable for massively Parallel computers. In the past, most research on DDM has focused on the domain splitting technique. In this paper. we focus our attention on use of a combination of techniques to solve each subproblem. The central question with DDM is that of how to doal with the pseodoboundary conditions. Here, we introduce a set of operators which act on the pseudo-boundaries in the solution process, referring to this new. procedure as the 'Generalized Domain Decomposition A.Jlethod(GDDM).' We have already obtained convergence factors for GDDM with certain classes of PDE's. These ctonvergence factors show that we can derive exact solutions of the whole problem for certain types of PDE's, and can get superior speed of convergence for other types.
基金supported by by the National Natural Science Foundation of China under Grant Nos.11271034,11290141the Project SYSKF1207 from SKLCS,IOS,the Chinese Academy of Sciences
文摘This paper presents a generalization of the authors' earlier work. In this paper, the two concepts, generic regular decomposition (GRD) and regular-decomposition-unstable (RDU) variety introduced in the authors' previous work for generic zero-dimensional systems, are extended to the case where the parametric systems are not necessarily zero-dimensional. An algorithm is provided to compute GRDs and the associated RDU varieties of parametric systems simultaneously on the basis of the algorithm for generic zero-dimensional systems proposed in the authors' previous work. Then the solutions of any parametric system can be represented by the solutions of finitely many regular systems and the decomposition is stable at any parameter value in the complement of the associated RDU variety of the parameter space. The related definitions and the results presented in the authors' previous work are also generalized and a further discussion on RDU varieties is given from an experimental point of view. The new algorithm has been implemented on the basis of DISCOVERER with Maple 16 and experimented with a number of benchmarks from the literature.
文摘A method was developed for the determination of total arsenic concentration in less than ng/ml level by decomposition of organoarsenicals using photo -oxidation combined with in situ trapping of arsenic hydride on a palladium coated graphite tube with subsequent atomization and detection by AAS. The organoarsenicals include monomethylarsenic, dimethylarsenic, arsenobetaine, arsenocholine, o -aminobenzenarsenate and p -aminobenzenarsenate. The method is simple and sensitive. Detection limit was obtained from different arsenic compounds over the range from 0. 058 to 0.063 ng/ml as As (based on three times of the standard deviation of 10 blank measurements) and the relative standard deviations for ten replicate measurements were from 2.0 to 3.8%. The calibration curves of arsenic compounds including inorganic and organic arsenicals were linear over the range from 0.1 to 3.0 ng/ml as As. The recommended method has been applied to the determination of total arsenic in tap and lake water samples at ng/ml levels.
文摘Source-generated noise, such as air, refracted, guided waves, near-surface multiples, and radial ground roll, is one of the most challenging problems in the land seismic method. The interference of the noise with reflection events often results in a distorted representation of the subsurface and gives rise to interpretation uncertainties. To suppress the noise, geophysicists have devised various techniques in both acquisition and processing stages. Conventional processing methods, such as high-pass, f - k and hyperbolic velocity filters, however, have certain disadvantages when handling actual seismic data. In this study, we present a new hybrid method combining singular value decomposition (SVD) with a special linear transformation of the common-shot gather. The method is aimed at effectively removing the noise while minimizing harm to the signal. As compared with other methods, the SVD-based one gives a denser approximation to source-generated noise before its subtraction from the seismic data, due to the use of more appropriate basis functions. The special transformation applied in advance to the data is intended to align the source-generated noise events horizontally and thus to benefit the subsequent SVD. The effectiveness of the method in suppressing source-generated noise is demonstrated with a synthetic data set. Emphasis is put on the comparison of the performance of the method with that of conventional f - k filtering.
基金We gratefully acknowledge the support of National Natural Science Foundation of China(NSFC)(Grant No.51977133&Grant No.U2066209).
文摘Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations.
文摘This paper is sequel to the authors paper [18]. By using the generalized Burchnall-Chaundy operator method, the authors are aiming at deriving certain decomposition formulas for some interesting special cases of Kampe de Feriets series of double hypergeometric series F;.
基金supported by The Key Project of Natural Science Foundation of China G10531080National Basic Research Program of China No.2005CB321702Natural Science Foundation of China G10771178.
文摘A class of normal-like derivatives for functions with low regularity defined on Lipschitz domains are introduced and studied.It is shown that the new normal-like derivatives,which are called the generalized normal derivatives,preserve the major prop- erties of the existing standard normal derivatives.The generalized normal derivatives are then applied to analyze the convergence of domain decomposition methods (DDMs) with nonmatching grids and discontinuous Galerkin (DG) methods for second-order el- liptic problems.The approximate solutions generated by these methods still possess the optimal energy-norm error estimates,even if the exact solutions to the underlying elliptic problems admit very low regularities.
基金supported in part by the National Natural Science Foundation of China(52177042)Natural Science Foundation of Hebei Province(E2020502031)+1 种基金the Fundamental Research Funds for the Central Universities(2017MS151),Suzhou Social Developing Innovation Project of Science and Technology(SS202134)the Top Youth Talent Support Program of Hebei Province([2018]-27).
文摘This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fault,the sta-tor vibration signal analysis based on ACMD(adaptive chirp mode decomposition)and DEO3S(demodulation energy operator of symmetrical differencing)was adopted to extract the fault feature.Firstly,FT(Fourier trans-form)is applied to the vibration signal to obtain the instantaneous frequency,and PE(permutation entropy)is calculated to select the proper weighting coefficients.Then,the signal is decomposed by ACMD,with the instan-taneous frequency and weighting coefficient acquired in the former step to obtain the optimal mode.Finally,DEO3S is operated to get the envelope spectrum which is able to strengthen the characteristic frequencies of the stator inter-turn short circuit fault.The study on the simulating signal and the real experiment data indicates the effectiveness of the proposed method for the stator inter-turn short circuit fault in synchronous generators.In addition,the comparison with other methods shows the superiority of the proposed model.
文摘Results on the composite generalized Laguerre-Legendre interpolation in unbounded domains are established. As an application,a composite Laguerre-Legendre pseudospectral scheme is presented for nonlinear Fokker-Planck equations on the whole line. The convergence and the stability of the proposed scheme are proved. Numerical results show the efficiency of the scheme and conform well to theoretical analysis.
文摘This paper deals with the boundary control problem of the unforced generalized Burgers-Huxley equation with high order nonlinearity when the spatial domain is [0, 1]. We show that this type of equations are globally exponential stable in L<sup>2</sup> [0, 1] under zero Dirichlet boundary conditions. We use an adaptive nonlinear boundary controller to show the convergence of the solution to the trivial solution and to show that it achieves global asymptotic stability in time. We introduce numerical simulation for the controlled equation using the Adomian decomposition method (ADM) in order to illustrate the performance of the controller.
基金supported by the National Key Research and Development Program of China (No.2020YFB1713503)the Fundamental Research Funds for the Central Universities (No.20720190009)2019 Industry-University-Research Cooperation Project of Aero Engine Corporation of China (No.HFZL2019CXY02).
文摘Many kinds of electrical equipment are used in civil and building engineering.The motor is one of the main power components of this electrical equipment,which can provide stable power output.During the long-term use of motors,various motor faults may occur,which affects the normal use of electrical equipment and even causes accidents.It is significant to apply fault diagnosis for the motors at the construction site.Aiming at the problem that signal data of faulty motor lack diversity,this research designs a multi-layer perceptron Wasserstein generative adversarial network,which is used to enhance training data through distribution fusion.A discrete wavelet decomposition algorithm is employed to extract the low-frequency wavelet coefficients from the original motor current signals.These are used to train themulti-layer perceptron Wasserstein generative adversarial model.Then,the trainedmodel is applied to generate fake current wavelet coefficients with the fused distribution.A motor fault classification model consisting of a feature extractor and pattern recognizer is built based on perceptron.The data augmentation experiment shows that the fake dataset has a larger distribution than the real dataset.The classification model trained on a real dataset,fake dataset and combined dataset achieves 21.5%,87.2%,and 90.1%prediction accuracy on the unseen real data,respectively.The results indicate that the proposed data augmentation method can effectively generate fake data with the fused distribution.The motor fault classification model trained on a fake dataset has better generalization performance than that trained on a real dataset.