In a generalized linear model with q x 1 responses, the bounded and fixed (or adaptive) p × q regressors Zi and the general link function, under the most general assumption on the minimum eigenvalue of ZiZ'i,...In a generalized linear model with q x 1 responses, the bounded and fixed (or adaptive) p × q regressors Zi and the general link function, under the most general assumption on the minimum eigenvalue of ZiZ'i,the moment condition on responses as weak as possible and the other mild regular conditions, we prove that the maximum quasi-likelihood estimates for the regression parameter vector are asymptotically normal and strongly consistent.展开更多
In a generalized linear model with q×1 responses, bounded and fixed p×q regressors zi and general link function, under the most general assumption on the minimum eigenvalue of ∑in=1 ZiZi', the moment co...In a generalized linear model with q×1 responses, bounded and fixed p×q regressors zi and general link function, under the most general assumption on the minimum eigenvalue of ∑in=1 ZiZi', the moment condition on responses as weak as possible and other mild regular conditions, we prove that with probability one, the quasi-likelihood equation has a solution βn for all large sample size n, which converges to the true regression parameter β0. This result is an essential improvement over the relevant results in literature.展开更多
This article concerded with a semiparametric generalized partial linear model (GPLM) with the type Ⅱ censored data. A sieve maximum likelihood estimator (MLE) is proposed to estimate the parameter component, allo...This article concerded with a semiparametric generalized partial linear model (GPLM) with the type Ⅱ censored data. A sieve maximum likelihood estimator (MLE) is proposed to estimate the parameter component, allowing exploration of the nonlinear relationship between a certain covariate and the response function. Asymptotic properties of the proposed sieve MLEs are discussed. Under some mild conditions, the estimators are shown to be strongly consistent. Moreover, the estimators of the unknown parameters are asymptotically normal and efficient, and the estimator of the nonparametric function has an optimal convergence rate.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.10471136)Ph.D.Program Foundation of Ministry of Education of China and Special Foundation of the Chinese Academy of Science and USTC.
文摘In a generalized linear model with q x 1 responses, the bounded and fixed (or adaptive) p × q regressors Zi and the general link function, under the most general assumption on the minimum eigenvalue of ZiZ'i,the moment condition on responses as weak as possible and the other mild regular conditions, we prove that the maximum quasi-likelihood estimates for the regression parameter vector are asymptotically normal and strongly consistent.
基金This work was partially supported by the National Natural Science Foundation of China(Grant Nos.10171094&10471136)Ph.D.Program Foundation of Ministry of Education of ChinaSpecial Foundations of the Chinese Academy of Science and USTC.
文摘In a generalized linear model with q×1 responses, bounded and fixed p×q regressors zi and general link function, under the most general assumption on the minimum eigenvalue of ∑in=1 ZiZi', the moment condition on responses as weak as possible and other mild regular conditions, we prove that with probability one, the quasi-likelihood equation has a solution βn for all large sample size n, which converges to the true regression parameter β0. This result is an essential improvement over the relevant results in literature.
基金The talent research fund launched (3004-893325) of Dalian University of Technologythe NNSF (10271049) of China.
文摘This article concerded with a semiparametric generalized partial linear model (GPLM) with the type Ⅱ censored data. A sieve maximum likelihood estimator (MLE) is proposed to estimate the parameter component, allowing exploration of the nonlinear relationship between a certain covariate and the response function. Asymptotic properties of the proposed sieve MLEs are discussed. Under some mild conditions, the estimators are shown to be strongly consistent. Moreover, the estimators of the unknown parameters are asymptotically normal and efficient, and the estimator of the nonparametric function has an optimal convergence rate.