期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Innovative Technologies for Large-Scale Water Production in Arid Regions: Strategies for Sustainable Development
1
作者 Boris Menin 《Journal of Applied Mathematics and Physics》 2024年第7期2506-2558,共53页
Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of wate... Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of water to address these challenges effectively. Key approaches include atmospheric water generation, advanced desalination techniques, innovative water collection methods such as fog nets and dew harvesting, geothermal water extraction, and water recycling and reuse. Each method is evaluated for its feasibility with existing technology, potential time of implementation, required investments, and specific challenges. By leveraging these technologies and combining them into a multifaceted water management strategy, it is possible to enhance water security, support agricultural and industrial activities, and improve living conditions in arid regions. Collaborative efforts between governments, private sector entities, and research institutions are crucial to advancing these technologies and ensuring their sustainable implementation. The article provides a comprehensive overview of the current state of these technologies, their potential for large-scale application, and recommendations for future research and development. 展开更多
关键词 Atmospheric Water Generation Advanced Desalination Sustainable Development Geothermal Water Extraction Water Recycling Arid Regions Water Security
下载PDF
Comprehensive applicability evaluation of four precipitation products at multiple spatiotemporal scales in Northwest China
2
作者 WANG Xiangyu XU Min +3 位作者 KANG Shichang LI Xuemei HAN Haidong LI Xingdong 《Journal of Arid Land》 SCIE CSCD 2024年第9期1232-1254,共23页
Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relie... Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relief.Currently,the applicability of multi-source precipitation products for long time series in Northwest China has not been thoroughly evaluated.In this study,precipitation data from 183 meteorological stations in Northwest China from 1979 to 2020 were selected to assess the regional applicability of four precipitation products(the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5),Global Precipitation Climatology Centre(GPCC),Climatic Research Unit gridded Time Series Version 4.07(CRU TS v4.07,hereafter CRU),and Tropical Rainfall Measuring Mission(TRMM))based on the following statistical indicators:correlation coefficient,root mean square error(RMSE),relative bias(RB),mean absolute error(MAE),probability of detection(POD),false alarm ratio(FAR),and equitable threat score(ETS).The results showed that precipitation in Northwest China was generally high in the east and low in the west,and exhibited an increasing trend from 1979 to 2020.Compared with the station observations,ERA5 showed a larger spatial distribution difference than the other products.The overall overestimation of multi-year average precipitation was approximately 200.00 mm and the degree of overestimation increased with increasing precipitation intensity.The multi-year average precipitation of GPCC and CRU was relatively close to that of station observations.The trend of annual precipitation of TRMM was overestimated in high-altitude regions and the eastern part of Lanzhou with more precipitation.At the monthly scale,GPCC performed well but underestimated precipitation in the Tarim Basin(RB=-4.11%),while ERA5 and TRMM exhibited poor accuracy in high-altitude regions.ERA5 had a large bias(RB≥120.00%)in winter months and a strong dispersion(RMSE≥35.00 mm)in summer months.TRMM showed a relatively low correlation with station observations in winter months(correlation coefficients≤0.70).The capture performance analysis showed that ERA5,GPCC,and TRMM had lower POD and ETS values and higher FAR values in Northwest China as the precipitation intensity increased.ERA5 showed a high capture performance for small precipitation events and a slower decreasing trend of POD as the precipitation intensity increased.GPCC had the lowest FAR values.TRMM was statistically ineffective for predicting the occurrence of daily precipitation events.The findings provide a reference for data users to select appropriate datasets in Northwest China and for data developers to develop new precipitation products in the future. 展开更多
关键词 precipitation products the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5) Global Precipitation Climatology Centre(GPCC) Climatic Research Unit gridded Time Series(CRU TS) Tropical Rainfall Measuring Mission(TRMM) applicability evaluation Northwest China
下载PDF
Pre-Processing,Quality Assurance,and Use of Global Atmospheric Motion Vector Observations in CRA
3
作者 Minyan WANG Shuang YAO +3 位作者 Lipeng JIANG Tao ZHANG Chunxiang SHI Ting ZHU 《Journal of Meteorological Research》 SCIE CSCD 2022年第6期947-962,共16页
Assimilation of atmospheric motion vectors(AMVs)is important in the initialization of the atmospheric state in numerical weather prediction models,especially over oceans and at high latitudes where conventional data a... Assimilation of atmospheric motion vectors(AMVs)is important in the initialization of the atmospheric state in numerical weather prediction models,especially over oceans and at high latitudes where conventional data are sparse.This paper presents a detailed description of the pre-processing,quality assurance,and use of global AMVs in China’s first generation of the 40-yr(1979-2018)CRA global atmospheric reanalysis product.A new AMV archive is integrated from near real-time operational Global Telecommunication System data and reprocessed AMV datasets released or produced mainly during 2014-2016 according to a priority principle.To avoid the misuse of data with systematic quality problems,the observations of all 18 types of AMVs from 54 satellites are pre-evaluated over the whole time series.The pre-evaluation system developed by the CRA team is based on the NCEP Gridpoint Statistical Interpolation(GSI)three-dimensional variational assimilation system and the ERA-Interim reanalysis product.The AMVs in the new AMV archive are denser than the AMVs prepared for the Climate Forecast System Reanalysis product,the bias and root-mean-square values are smaller,and the time series are steadier.The new AMV archive is assimilated in the CRA product based on the NCEP GSI assimilation procedure and quality control configuration with reference to the pre-evaluation results.This is the first time that the reprocessed AMVs from Fengyun-2 satellites from June 2005 to July 2017 are assimilated in a reanalysis product.The assimilation features inspire confidence in the accuracy and stability of these data.The mean root-mean-square values of the observation minus analysis infrared,water vapor,and visible AMV were 1.5-3.4,2.7-3.6,and 1.3-2.1 m s-1,respectively.This experience of integrating,pre-evaluating,and assimilating AMV observations is valuable for the next generation of reanalysis products. 展开更多
关键词 REANALYSIS CRA(China’s first generation of 40-yr global atmospheric ReAnalysis product) atmospheric motion vector integration ASSIMILATION reprocessed data
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部