期刊文献+
共找到919篇文章
< 1 2 46 >
每页显示 20 50 100
Demonstration of a small‐scale power generator using supercritical CO_(2) 被引量:1
1
作者 Ligeng Li Hua Tian +7 位作者 Xin Lin Xianyu Zeng Yurong Wang Weilin Zhuge Lingfeng Shi Xuan Wang Xingyu Liang Gequn Shu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期269-290,共22页
The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting th... The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting thermal energy into mechanical work and electric power.The operation of the generator encounters challenges,including high temperature,high pressure,high rotational speed,and other engineering problems,such as leakage.Experimental studies of sCO_(2)turbines are insufficient because of the significant difficulties in turbine manufacturing and system construction.Unlike most experimental investigations that primarily focus on 100 kW‐or MW‐scale power generation systems,we consider,for the first time,a small‐scale power generator using sCO_(2).A partial admission axial turbine was designed and manufactured with a rated rotational speed of 40,000 rpm,and a CO_(2)transcritical power cycle test loop was constructed to validate the performance of our manufactured generator.A resistant gas was proposed in the constructed turbine expander to solve the leakage issue.Both dynamic and steady performances were investigated.The results indicated that a peak electric power of 11.55 kW was achieved at 29,369 rpm.The maximum total efficiency of the turbo‐generator was 58.98%,which was affected by both the turbine rotational speed and pressure ratio,according to the proposed performance map. 展开更多
关键词 generator performance map power generation supercritical CO_(2) TURBINE
下载PDF
Optimizing the power conversion processes in diluted donor/acceptor heterojunctions towards 19.4%efficiency all-polymer solar cells
2
作者 Liang Wang Chen Chen +11 位作者 Zirui Gan Chenhao Liu Chuanhang Guo Weiyi Xia Wei Sun Jingchao Cheng Yuandong Sun Jing Zhou Zexin Chen Dan Liu Wei Li Tao Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期345-350,共6页
All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structure... All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structures within the photoactive film,inefficient charge generation and carrier transport are observed which lead to inferior photovoltaic performance compared to smaller molecular acceptor-based photovoltaics.Here,by diluting PM6 with a cutting-edge polymeric acceptor PY-IT and diluting PY-IT with PM6 or D18,donor-dominating or acceptor-dominating heterojunctions were prepared.Synchrotron X-ray and multiple spectrometer techniques reveal that the diluted heterojunctions receive increased structural order,translating to enhanced carrier mobility,improved exciton diffusion length,and suppressed non-radiative recombination loss during the power conversion.As the results,the corresponding PM6+1%PY-IT/PY-IT+1%D18 and PM6+1%PY-IT/PY-IT+1%PM6 devices fabricated by layer-by-layer deposition received superior power conversion efficiency(PCE)of 19.4%and 18.8%respectively,along with enhanced operational lifetimes in air,outperforming the PCE of 17.5%in the PM6/PY-IT reference device. 展开更多
关键词 All-polymer solar cells power conversion efficiency Structural order Charge generation
下载PDF
Design of Permanent Magnet Synchronous Generators for Wave Power Generation 被引量:4
3
作者 Fang Hongwei Wang Dan 《Transactions of Tianjin University》 EI CAS 2016年第5期396-402,共7页
In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Be... In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embedded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coefficient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell. 展开更多
关键词 analytical geometry method mechanical pole-arc coefficient OCEAN wave power generation PERMANENT MAGNET SYNCHRONOUS generator
下载PDF
The impact of dielectrics on the electrical capacity, concentration, efficiency ozone generation for the plasma reactor with mesh electrodes 被引量:1
4
作者 Ernest GNAPOWSKI Sebastian GNAPOWSKI Jaroslaw PYTKA 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第8期89-95,共7页
This paper presents experimental results concerning the effect of dielectric type on ozone concentration and the efficiency of its generation in plasma reactor with two mesh electrodes.Three types of dielectric solid ... This paper presents experimental results concerning the effect of dielectric type on ozone concentration and the efficiency of its generation in plasma reactor with two mesh electrodes.Three types of dielectric solid were used in the study; glass, micanite and Kapton insulating foil. The experiments were conducted for voltage ranges from 2.3 to 13 k V. A plasma reactor equipped with two 0.3×0.3 mm^2 mesh electrodes made of acid resistant AISI 304 mesh was used in the experiments. The influence of the dielectric type on the concentration and efficiency of ozone generation was described. The resulting maximum concentration of the ozone was about 2.70–9.30 g O3 m^-3, depending on the dielectrics used. The difference between the maximum and the minimum ozone concentration depends on the dielectric used,this accounts for 70% at the variance. The reactor capacity has also been described in the paper; total Ct and dielectric capacitance Cd depending on the dielectric used and its thickness. 展开更多
关键词 ozone generation efficiency dielectric mesh electrode ozone generator electrical capacity
下载PDF
Assessment of Sustainability Indicators of Thermoelectric Power Generation in Cameroon Using Exergetic Analysis Tools
5
作者 Moungnutou Mfetoum Inoussah Moukengue Imano Adolphe Lissouck Daniel 《Energy and Power Engineering》 2017年第1期22-39,共18页
In this paper, we evaluate the performance and sustainability indicators of various thermal power generation technologies in Cameroon using the exergy analysis tools. For this purpose, on the basis of data from the In... In this paper, we evaluate the performance and sustainability indicators of various thermal power generation technologies in Cameroon using the exergy analysis tools. For this purpose, on the basis of data from the International Energy Agency (IEA) for Cameroon corresponding to the period from 2006 to 2014, we calculated the average energy and exergy efficiencies of each electricity generation technology from thermal sources. The average values of the exergy efficiencies obtained are respectively 28.97% for the LFO plants, 30.94% for the HFO plants, 34.66% for the biofuel plants and 36.67% for the gas-fired plants. The average sustainability indexes for each of the technologies are determined and values range from 1.56 for LFO plants to 2.12 for biofuel plants. The improvement potentials of each technology are calculated in order to identify the tracks of increase of their efficiency. Average values range from 165.57 GWh for biofuel plants to 1301.77 GWh for LFO plants. The results of this study should enable the development of productive and applicable planning for future energy policies, in particular for the electricity sector in Cameroon. 展开更多
关键词 EXERGY efficiency power generation SUSTAINABILITY Cameroon
下载PDF
On the Maximum of Wind Power Efficiency
6
作者 Gerhard Kramm Gary Sellhorst +3 位作者 Hannah K. Ross John Cooney Ralph Dlugi Nicole Mölders 《Journal of Power and Energy Engineering》 2016年第1期1-39,共39页
In our paper we demonstrate that the filtration equation used by Gorban’ et al. for determining the maximum efficiency of plane propellers of about 30 percent for free fluids plays no role in describing the flows in ... In our paper we demonstrate that the filtration equation used by Gorban’ et al. for determining the maximum efficiency of plane propellers of about 30 percent for free fluids plays no role in describing the flows in the atmospheric boundary layer (ABL) because the ABL is mainly governed by turbulent motions. We also demonstrate that the stream tube model customarily applied to derive the Rankine-Froude theorem must be corrected in the sense of Glauert to provide an appropriate value for the axial velocity at the rotor area. Including this correction leads to the Betz-Joukowsky limit, the maximum efficiency of 59.3 percent. Thus, Gorban’ et al.’s 30% value may be valid in water, but it has to be discarded for the atmosphere. We also show that Joukowsky’s constant circulation model leads to values of the maximum efficiency which are higher than the Betz-Jow-kowsky limit if the tip speed ratio is very low. Some of these values, however, have to be rejected for physical reasons. Based on Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and S&oslashrensen we also illustrate that the maximum efficiency of propeller-type wind turbines depends on tip-speed ratio and the number of blades. 展开更多
关键词 Wind power power efficiency General Momentum theory Axial Momentum theory Blade Element Analysis Betz-Joukowsky Limit Joukowsky’s Constant Circulation Model Glauert’s Optimum Actuator Disk Balance Equation for Momentum Equation of Continuity Balance Equation for Kinetic Energy Reynolds’ Average Hesselberg’s Average Favre’s Average Bernoulli’s Equation Integral Equations
下载PDF
Effect of Different Raft Shapes on Hydrodynamic Characteristics of the Attenuator-Type Wave Energy Converter
7
作者 WANG Jin WANG Shu-qi +2 位作者 JIANG Qing-dian XU Yun-xin SHI Wei-chao 《China Ocean Engineering》 SCIE EI CSCD 2023年第4期645-659,共15页
A numerical simulation method based on CFD has been established to simulate the fully coupled motion for an atten-uator-type wave energy converter(WEC).Based on this method,a detailed parametric analysis has been cond... A numerical simulation method based on CFD has been established to simulate the fully coupled motion for an atten-uator-type wave energy converter(WEC).Based on this method,a detailed parametric analysis has been conducted to investigate the design of the rafts.The effects of different parameters(wave parameters,structural parameters and PTO parameters)on the hydrodynamic characteristics of the attenuator-type WEC were studied in detail.The results show that in terms of wave parameters,there is an optimal wave period,which makes the relative pitching angle amplitude of the WEC reach the maximum,and the increase of wave height is conducive to the relative pitching angle amplitude of wave energy.Under different wave conditions,the relative pitch angle of the parallelogram raft device is the maximum.In terms of structural parameters,the parallelogram attenuator-type device has the optimal values in different relative directions,different distances and different apex angle,which makes the relative motion amplitude of the device reach the maximum,and the spacing and the apex angle have influence on the motion frequency of the device,while the relative direction has almost no influence on it.In terms of PTO parameters,there is an optimal damping coefficient,which makes the power generation efficiency of the WEC reach the maximum.The research results provide a valuable reference for future research and design of the attenuator-type WEC. 展开更多
关键词 wave energy converter attenuator-type shape hydrodynamic analysis power generation efficiency
下载PDF
Difference between grid connections of large-scale wind power and conventional synchronous generation 被引量:7
8
作者 Jie Li Chao Liu +2 位作者 Pengfei Zhang Yafeng Wang Jun Rong 《Global Energy Interconnection》 2020年第5期486-493,共8页
In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is rel... In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is relatively simple. Thus, connecting large-capacity wind power units complicates the peak load regulation and stable operation of the power grids in these regions. Most wind turbines use power electronic converter technology, which affects the safety and stability of the power grid differently compared with conventional synchronous generators. Furthermore, fluctuations in wind power cause fluctuations in the output of wind farms, making it difficult to create and implement suitable power generation plans for wind farms. The generation technology and grid connection scheme for wind power and conventional thermal power generation differ considerably. Moreover, the active and reactive power control abilities of wind turbines are weaker than those of thermal power units, necessitating additional equipment to control wind turbines. Hence, to address the aforementioned issues with large-scale wind power generation, this study analyzes the differences between the grid connection and collection strategies for wind power bases and thermal power plants. Based on this analysis, the differences in the power control modes of wind power and thermal power are further investigated. Finally, the stability of different control modes is analyzed through simulation. The findings can be beneficial for the planning and development of large-scale wind power generation farms. 展开更多
关键词 Large-scale wind power generation Conventional synchronous generators Grid connection scheme power control
下载PDF
Optimal design of linear switched reluctance motor for sea wave power generation 被引量:2
9
作者 Zhao Xin Dongqin Xiong +2 位作者 Teng Yun Zhe Chen Guangwei Liu 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期434-447,共14页
The switchless reluctance motor’s non-permanent magnet structure design ensures its high reliability in the marine environment;thus,it is a feasible solution for the generator of a sea wave power generation system.Ho... The switchless reluctance motor’s non-permanent magnet structure design ensures its high reliability in the marine environment;thus,it is a feasible solution for the generator of a sea wave power generation system.However,the corresponding thrust density and efficiency remain insufficient.This study focused on a new type of flat linear switched reluctance motor(LSRM),using the finite element software to establish a structural model,and optimized the design with the goal of improving the efficiency and energy density.The entropy method was adopted for sensitivity stratification to objectively select weights to avoid the influence of subjectively selected different proportional weights on the optimization results.Based on the entropy method,the sensitivity of different structural parameters was stratified,and the simulated annealing algorithm,response surface method,and single parameter scanning method were combined for optimization.Finally,the optimal structural size parameters of the motor were determined.Based on the two-dimensional finite element method,to simulate the electromagnetic performance of the reluctance motor under different operating conditions,such as thrust,loss,and efficiency,changes in motor performance before and after optimization were compared to verify the high power generation efficiency and energy density of the optimized linear motor. 展开更多
关键词 Linear switch reluctance motor Wave power Hierarchical optimization generation efficiency
下载PDF
Shape Effect of Piezoelectric Energy Harvester on Vibration Power Generation 被引量:2
10
作者 Amat A. Basari Sosuke Awaji +8 位作者 Song Wang Seiji Hashimoto Shunji Kumagai Kenji Suto Hiroaki Okada Hideki Okuno Bunji Homm Wei Jiang Shuren Wang 《Journal of Power and Energy Engineering》 2014年第9期117-124,共8页
Vibration energy harvesting is widely recognized as the useful technology for saving energy. The piezoelectric energy harvesting device is one of energy harvester and is used to operate certain types of MEMS devices. ... Vibration energy harvesting is widely recognized as the useful technology for saving energy. The piezoelectric energy harvesting device is one of energy harvester and is used to operate certain types of MEMS devices. Various factors influence the energy regeneration efficiency of the lead zirconate titanate piezoelectric (PZT) devices in converting the mechanical vibration energy to the electrical energy. This paper presents the analytical and experimental evaluation of energy regeneration efficiency of PZT devices through impedance matching method and drop-weight experiments to different shape of PZT devices. The results show that the impedance matching method has increased the energy regeneration efficiency while triangular shape of PZT device produce a stable efficiency in the energy regeneration. Besides that, it becomes clear that the power, energy and subsequently efficiency of the triangular plate are higher than those of the rectangular plate under the condition of the matching impedance and the same PZT area. 展开更多
关键词 VIBRATION power generation PZT DEVICE IMPEDANCE MATCHING Energy REgeneration efficiency
下载PDF
Fully Integrated High-Voltage Generators with Optimized Power Efficiency
11
作者 Doutreloigne Jan 《Journal of Computer and Communications》 2014年第13期1-8,共8页
This paper describes how the power efficiency of fully integrated Dickson charge pumps in high- voltage IC technologies can be improved considerably by implementing charge recycling techniques, by replacing the normal... This paper describes how the power efficiency of fully integrated Dickson charge pumps in high- voltage IC technologies can be improved considerably by implementing charge recycling techniques, by replacing the normal PN junction diodes by pulse-driven active diodes, and by choosing an appropriate advanced smart power IC technology. A detailed analysis reveals that the combination of these 3 methods more than doubles the power efficiency compared to traditional Dickson charge pump designs. 展开更多
关键词 CHARGE RECYCLING Dickson CHARGE PUMP HIGH-VOLTAGE generator power efficiency Optimization Smart power Technology
下载PDF
Fabrication and performance evaluation of the thermoelectric generation and performance measuring system
12
作者 王禹 Zheng Wenbo Wu Zhifei 《High Technology Letters》 EI CAS 2008年第2期199-204,共6页
A novel thennoelectric generating and performance measuring system (TGPMS) was designed and fabricated. TGPMS can not only achieve the function of thennoelectric generation, but also measure the thennoelectric perfo... A novel thennoelectric generating and performance measuring system (TGPMS) was designed and fabricated. TGPMS can not only achieve the function of thennoelectric generation, but also measure the thennoelectric performance parameters of the bismuth-telluride-based thennoelectric device accurately. These thennoelectric performance parameters mainly include the dependence of the Seebeck coefficient of the thennoelectric device on the device's temperature in the low temperature range (about 40 ~ 190~C ), and the dependence of the power output and thermoelectric conversion efficiency on the temperature dif- ference or output load. With the optimum load, the optimal value of the power output is 3.39W when the temperature difference reaches 231.2~C, and the optimal value of the conversion efficiency is 3.22% when the temperature difference reaches 208.9~C. TGPMS provides an experimental foundation for the application of the thennoelectric generators in the space field. 展开更多
关键词 thermoelectric generation performance measuring power output thermoelectric conversion efficiency
下载PDF
Profit-Based Optimal Operation of a Head-Dependent Hydroelectric Power Station in the Bilateral Market
13
作者 S.J.P.S. Mariano M.R.A. Calado L.A.F.M. Ferreira 《Journal of Energy and Power Engineering》 2011年第5期466-473,共8页
Deregulation and liberalization of electric power industry, among other things, has created new requirements for the market participants. The power system engineer, operator, and, in general, the market participants a... Deregulation and liberalization of electric power industry, among other things, has created new requirements for the market participants. The power system engineer, operator, and, in general, the market participants are being faced with requirements for which they do not have adequate training and the proper software tools. In this framework, among others, a pure hydro-generation company has to operate its hydro units, throughout the operating day, trying to fulfill the market clearing schedule or a bilateral contract, and modify the program in the intra-day energy markets if necessary (or more suitable) as real-time operation is getting closer. In this scenario the objective is to maximize the hydroelectric power plant profit from selling energy in the spot market or by means of bilateral contracts. In this paper the optimal operation of a head-dependent hydroelectric power station in bilateral market-short-term hourly hydro resource scheduling for energy is obtained. 展开更多
关键词 Hydroelectric power generation hydroelectric generators optimization methods electricity market.
下载PDF
Low Steam Condition Heat Generator Combined with Advanced Oxy-Fuel Combustion LNG Gas Turbine for Power Generation
14
作者 Kanji Oshima Yohji Uchiyama 《Journal of Energy and Power Engineering》 2012年第8期1226-1232,共7页
We propose a novel concept for power generation that involves the combination of a LSCHG (low-steam-condition heat generator), such as a light water nuclear reactor or a biomass combustion boiler, with an advanced c... We propose a novel concept for power generation that involves the combination of a LSCHG (low-steam-condition heat generator), such as a light water nuclear reactor or a biomass combustion boiler, with an advanced closed-cycle oxy-fuel combustion gas turbine-a type of complex and efficient oxy-fuel gas turbine. In this study, a LSCHG is designed to heat water to saturated steam of a few MPa, to assist in the generation of the main working fluids, instead of a compressor used in the advanced oxy-fuel gas turbine. This saturated steam can have a lower pressure and temperature than those of an existing nuclear power plant or biomass-fired power plant. We estimated plant performances in LHV (lower heating value) basis from a heat balance model based on a conceptual design of a plant for different gas turbine inlet pressures and temperatures of 1,300 ℃ and 1,500 ℃, taking into account the work to produce O2 and capture CO2. While the net power generating efficiencies of a reference plant are estimated to be about 52.0% and 56.0% at 1,300 ℃ and 1,500 ℃, respectively, and conventional LSCHG power plant is assumed to have an efficiency of about 35% or less for pressures of 2.5-6.5 MPa, the proposed hybrid plant achieved 42.8%-44.7% at 1,300 ℃ and 47.8%-49.2% at 1,500 ℃. In the proposed plant, even supposing that the generating efficiency of the LNG system in the proposed plant remains equal to that of the reference plant, the efficiency of LSCHG system can be estimated 37.4% for 6.5 MPa and 33.2% for 2.5 MPa, even though the LSHCG system may be regarded as consisting of fewer plant facilities than a conventional LSCHG power plant. 展开更多
关键词 Gas turbine oxy-fuel combustion hybrid power plant generating efficiency conceptual design.
下载PDF
The accounting method and application of CO_2 emissions responsibility by the electricity sector at the provincial level in China 被引量:1
15
作者 Kun Fu Shaozhou Qi 《Chinese Journal of Population,Resources and Environment》 2015年第1期32-42,共11页
When accounting the CO_2 emissions responsibility of the electricity sector at the provincial level in China,it is of great significance to consider the scope of both producers' and the consumers' responsibili... When accounting the CO_2 emissions responsibility of the electricity sector at the provincial level in China,it is of great significance to consider the scope of both producers' and the consumers' responsibility,since this will promote fairness in defining emission responsibility and enhance cooperation in emission reduction among provinces.This paper proposes a new method for calculating carbon emissions from the power sector at the provincial level based on the shared responsibility principle and taking into account interregional power exchange.This method can not only be used to account the emission responsibility shared by both the electricity production side and the consumption side,but it is also applicable for calculating the corresponding emission responsibility undertaken by those provinces with net electricity outflow and inflow.This method has been used to account for the carbon emissions responsibilities of the power sector at the provincial level in China since 2011.The empirical results indicate that compared with the production-based accounting method,the carbon emissions of major power-generation provinces in China calculated by the shared responsibility accounting method are reduced by at least 10%,but those of other power-consumption provinces are increased by 20% or more.Secondly,based on the principle of shared responsibility accounting,Inner Mongolia has the highest carbon emissions from the power sector while Hainan has the lowest.Thirdly,four provinces,including Inner Mongolia,Shanxi,Hubei and Anhui,have the highest carbon emissions from net electricity outflow- 14 million t in 2011,accounting for 74.42% of total carbon emissions from net electricity outflow in China.Six provinces,including Hebei,Beijing,Guangdong,Liaoning,Shandong,and Jiangsu,have the highest carbon emissions from net electricity inflow- 11 million t in 2011,accounting for 71.44% of total carbon emissions from net electricity inflow in China.Lastly,this paper has estimated the emission factors of electricity consumption at the provincial level,which can avoid repeated calculations when accounting the emission responsibility of power consumption terminals(e.g.construction,automobile manufacturing and other industries).In addition,these emission factors can also be used to account the emission responsibilities of provincial power grids. 展开更多
关键词 SHARED RESPONSIBILITY power generation efficiency CARBON EMISSIONS EMISSION FACTOR
下载PDF
Piezoelectric generator based on torsional modes for power harvesting from angular vibrations 被引量:1
16
作者 陈子光 胡元太 杨嘉实 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第6期779-784,共6页
Torsional vibration of a circular piezoelectric shell of polarized ceramics mounted on a rotationally vibrating base is analyzed. The shell is properly electroded and connected to a circuit such that an electric outpu... Torsional vibration of a circular piezoelectric shell of polarized ceramics mounted on a rotationally vibrating base is analyzed. The shell is properly electroded and connected to a circuit such that an electric output is generated. The structure analyzed represents a piezoelectric generator for converting mechanical energy from angular vibrations to electrical energy. Analytical expressions and numerical results for the output voltage, current, power, efficiency and power density are given. 展开更多
关键词 piezoelectric generator torsional vibration power harvesting efficiency
下载PDF
New energy power generation-wind power generation 被引量:1
17
作者 HAN Chen-xi ZHANG Si-han 《Journal of Energy and Power Engineering》 2009年第9期45-48,共4页
This paper introduced the status quo of wind power and wind power generation technology. Focusing on the introduction of wind power generating system ibrational self-consistent field(VSCF), program implementation in... This paper introduced the status quo of wind power and wind power generation technology. Focusing on the introduction of wind power generating system ibrational self-consistent field(VSCF), program implementation included Alternating Current (AC)-Direct Current (DC)-AC conversion system, magnetic field modulation generator system, doubly-fed generator system etc. Among these, doubly-fed generator system is the trend. Where to build the wind farm is very important, so a perfect site is needed. Wind power generation will have a bright future. As long as the wind power can be linked to the grid in large scale. 展开更多
关键词 wind power generation VSCF doubly-fed generator system wind farm site
下载PDF
Impact of Reactive Power in Power Evacuation from Wind Turbines
18
作者 Ashish Ranjan S. Prabhakar Karthikeyan +3 位作者 Ankur Ahuja K. Palanisamy I. Jacob Raglend D. P. Kothari 《Journal of Electromagnetic Analysis and Applications》 2009年第1期15-23,共9页
Application of Distributed Generation (DG) to supply the demands of a diverse customer base plays a vital role in the renewable energy environment. Various DG technologies are being integrated into power systems to pr... Application of Distributed Generation (DG) to supply the demands of a diverse customer base plays a vital role in the renewable energy environment. Various DG technologies are being integrated into power systems to provide alterna-tives to energy sources and to improve reliability of the system. Power Evacuation from these remotely located DG’s remains a major concern for the power utilities these days. The main cause of concern regarding evacuation is con-sumption of reactive power for excitation by Induction Generators (IG) used in wind power production which affects the power system in variety of ways. This paper deals with the issues related to reactive power consumption by Induc-tion generators during power evacuation. Induction generator based wind turbine model using MATLAB/SIMULINK is simulated and its impact on the grid is observed. The simulated results are analyzed and validated with the real time results for the system considered. A wind farm is also modeled and simulations are carried out to study the various im-pacts it has on the grid &amp;nearby wind turbines during Islanding and system event especially on 3-Phase to ground fault. 展开更多
关键词 Distributed generation (DG) Grid Wind Turbines INDUCTION generator ISLANDING power EVACUATION Point of Common Connection 3 Phase to Ground FAULT
下载PDF
Development of a Full Parameterized FE-modeling Tool for Efficient Vibration Investigations on End Windings of Turbo- and Hydro-Generators
19
作者 Bemd Schlegl Christian Scheinecker +3 位作者 Andreas Marn Fritz Neumayer Mario Himmelreich Franz Heitmeir 《Journal of Energy and Power Engineering》 2013年第8期1496-1504,共9页
End windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windin... End windings of generators are excited to vibrations due to electromagnetic forces which can cause severe damage and noise. To avoid this, it is important to predict the natural frequencies and modes of the end windings with finite elements. Due to the complex structure and unknown boundary conditions, the conventionally calculation of stator end windings has been very difficult and time consuming up to now. This paper describes the development of a full parameterized modeling tool, which allows a quick calculation of natural frequencies during the design phase of the generator. To keep the computing time low, it is important to find a way to get exact calculation results without detailed modeling of all pans. Additionally, special attention was paid to the active part, which has been replaced by spring-damper elements, and the determination of their stiffness via experimental modal analysis combined with finite element calculations. 展开更多
关键词 Electrical machines end windings finite element method generators hydro generator power generation vibrationproblems.
下载PDF
Examination for Experimental Verification of Improvement of Power Quality in Distribution System by PCS
20
作者 Shoji Kawasaki Naohiro Terada Hisao Taoka 《Journal of Energy and Power Engineering》 2014年第2期350-356,共7页
In the future, the power quality will decrease by the introduction of a lot of renewable energy sources. The topic of this research is a new method of operation of PCS (power conditioning systems) in the future dist... In the future, the power quality will decrease by the introduction of a lot of renewable energy sources. The topic of this research is a new method of operation of PCS (power conditioning systems) in the future distribution system. The purpose of this research is development of PCS with a function of improvement of the distribution system. Therefore, the authors propose a method of the power quality improvement of the distribution system by PCS. In addition, the authors construct the control logic to use in PCS The control logic suggests adding harmonic restraint function to conventional control. These were verified by simulation and an experiment. As the results, we confirmed that basic operation of PCS being carried out, harmonics were restrained, and power quality had improved. 展开更多
关键词 Distributed generator HARMONICS voltage total harmonics distortion power conditioner system photovoltaic generation power quality.
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部