Generalized Farey tree network (GFTN) and generalized Farey organized pyramid network (CFOPN) model are proposed, and their topological characteristics are studied by both theoretical analysis and numerical simula...Generalized Farey tree network (GFTN) and generalized Farey organized pyramid network (CFOPN) model are proposed, and their topological characteristics are studied by both theoretical analysis and numerical simulations, which are in good accordance with each other. Then weighted GFTN is studied using cumulative distributions of its Farey number value, edge weight, and node strength. These results maybe helpful for future theoretical development of hybrid models.展开更多
In this paper, we fabricated an organic thermo- electric (TE) device with modified [6,6]-phenyl-C61- butyric acid methyl ester (PCBM) and poly(3,4-ethylene- dioxythiophene) polystyrene sulfonate (PEDOT:PSS); ...In this paper, we fabricated an organic thermo- electric (TE) device with modified [6,6]-phenyl-C61- butyric acid methyl ester (PCBM) and poly(3,4-ethylene- dioxythiophene) polystyrene sulfonate (PEDOT:PSS); the device showed good stability in air condition. For n-leg, PCBM were doped with acridine orange base (3,6-bis (dimethylamino)acridine) (AOB) and 1,3-dimethyl-2,3- dihydro- 1H-benzoimidazole (N-DMBI). Co-doped PCBM utilizes synergistic effects of AOB and N-DMBI, resulting in excellent electrical conductivity and Seebeck coefficient values reaching 2 S/cm and -500 μV/K, respectively, at room temperature with dopant molar ratio of 0.11. P-type leg used modified PEDOT:PSS. Based on modified PCBM and PEDOT:PSS materials, we fabricated a TE module device with 48 p-type and n-type thermocouple and tested their output voltage, short current, and power. Output voltage measured -0.82 V, and generated power reached almost 945 μW with 75 K temperature gradient at 453 K hot-side temperature. These promising results showed potential of modified PEDOT and PCBM as TE materials for application in device optimization.展开更多
基金supported by the Nature Science Foundation of China under Grand Nos. 70431002, 60874087, 60773120, and 10647001the Nature Science Foundation of Beijing under Grand No. 4092040
文摘Generalized Farey tree network (GFTN) and generalized Farey organized pyramid network (CFOPN) model are proposed, and their topological characteristics are studied by both theoretical analysis and numerical simulations, which are in good accordance with each other. Then weighted GFTN is studied using cumulative distributions of its Farey number value, edge weight, and node strength. These results maybe helpful for future theoretical development of hybrid models.
基金We acknowledge the financial support provided by the National Young Natural Science Foundation of China (Grant No. 61306067) and the Fundamental Research Funds for the Central Universities in Huazhong University of Science and Technology (Nos. 2014NY009 and 2016YXMS033).
文摘In this paper, we fabricated an organic thermo- electric (TE) device with modified [6,6]-phenyl-C61- butyric acid methyl ester (PCBM) and poly(3,4-ethylene- dioxythiophene) polystyrene sulfonate (PEDOT:PSS); the device showed good stability in air condition. For n-leg, PCBM were doped with acridine orange base (3,6-bis (dimethylamino)acridine) (AOB) and 1,3-dimethyl-2,3- dihydro- 1H-benzoimidazole (N-DMBI). Co-doped PCBM utilizes synergistic effects of AOB and N-DMBI, resulting in excellent electrical conductivity and Seebeck coefficient values reaching 2 S/cm and -500 μV/K, respectively, at room temperature with dopant molar ratio of 0.11. P-type leg used modified PEDOT:PSS. Based on modified PCBM and PEDOT:PSS materials, we fabricated a TE module device with 48 p-type and n-type thermocouple and tested their output voltage, short current, and power. Output voltage measured -0.82 V, and generated power reached almost 945 μW with 75 K temperature gradient at 453 K hot-side temperature. These promising results showed potential of modified PEDOT and PCBM as TE materials for application in device optimization.