期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Chitosan/pshRNA Plasmid Nanoparticles Targeting MDR1 Gene Reverse Paclitaxel Resistance in Ovarian Cancer Cells 被引量:1
1
作者 杨琰 王泽华 +1 位作者 李敏芳 卢实 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2009年第2期239-242,共4页
In order to investigate the effect of chitosan/pshRNA plasmid nanoparticles targeting MDR1 genes on the resistance of A2780/TS cells to paclitaxel, chitosan/pshRNA plasmid nanoparti- cles were synthesized by means of ... In order to investigate the effect of chitosan/pshRNA plasmid nanoparticles targeting MDR1 genes on the resistance of A2780/TS cells to paclitaxel, chitosan/pshRNA plasmid nanoparti- cles were synthesized by means of a complex coacervation technique and transfected into A2780/TS cells. The cells transfected with MDRl-targeted chitosan/pshRNA plasmid nanoparticles were experimental cells and the cells transfected with chitosan/pGPU6/GFP/Neo no-load plasmid nanoparticles served as negative control cells. Morphological features of the nanoparticles were observed under transmission electron microscope (TEM). MDR1 mRNA expression was assessed by RT-PCR. Half-inhibitory concentration (IC50) ofpaclitaxel for A2780/TS cells was determined by MTT method. TEM showed that the nanoparticles were round-shaped, smooth in surface and the diameters varied from 80 to 120 nm. The MDR1 mRNA in the transfected cells was significantly decreased by 17.6%, 27.8% and 52.6% on the post-transfection day 2, 4 and 7 when compared with that in A2780/TS cells control (P〈0.05). MTT assay revealed that the relative reversal efficiency was increased over time and was 29.6%, 51.2% and 61.3% respectively in the transfected cells 2, 4, 7 days after transfection and IC_50 (0.197±0.003, 0.144±0.001, 0.120±0.004) were decreased with difference being significant when compared with that in A2780/TS (0.269±0.003) cells control (P〈0.05). It was concluded that chitosan/pshRNA plasmid nanoparticles targeting MDR1 can effectively reverse the paclitaxel resistance in A2780/TS cells in a time-dependent manner. 展开更多
关键词 mdr1 gene CHITOSAN pshRNA ovarian cancer PACLITAXEL drug resistance
下载PDF
PRELIMINARY STUDY OF RETROVIRAL MEDIATED TRANSFER OF THE HUMAN mdr-1 GENE INTO MURINE AND HUMAN HEMATOPOIETIC STEM/PROGENITOR CELLS 被引量:1
2
作者 冯凯 裴雪涛 +5 位作者 王立生 高文谦 徐黎 王玉芝 李梁 吴祖泽 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 1997年第4期36-39,共4页
To investigate the characteristics of multidrugresistance and transplantation of modified stem/ progenitor cells by multidrugresistant gene (mdr1 gene), we established PA317/MDR1 cell line which producing retroviruse... To investigate the characteristics of multidrugresistance and transplantation of modified stem/ progenitor cells by multidrugresistant gene (mdr1 gene), we established PA317/MDR1 cell line which producing retroviruses by transfecting the retroviral vector PHaMDR1/A into packging cell line PA317 by Lipofectin. The virus titer of the supernatants was 1.2×105 cfu/ml. We transfected the murine hematopietic cells collected from 5FU pretreated mice and they showed the ability to reconstitute the longterm hematopoiesis of preirradiated mice. After 4 months, both of bone marrow cells and peripheral blood cells of transplanted mice still contained mdr1 gene. We also transfered mdr1 gene into human bone marrow CD34+ cells selected by using magnetic cell sorting system. PCR analysis showed that transduced CD34+ cells maintained the mdr1 cDNA. A fraction of CFUGM originated from transfected CD34+ cells had the charactor of resistance to Taxol. It is indicated that mdr1 gene can be transduced into murine and human stem/proginitor cells through retroviral mediated gene transfer and it protects the transfected cells from cytotoxic drugs. 展开更多
关键词 Stem/progenitor cells mdr1 gene Gene transfer Retroviral mediated
下载PDF
CONGENITAL EXPRESSION OF mdr-1 GENE IN FRESH CANCER TISSUES FROM SEVERAL HIGH-INCIDENCE NEOPLASMS WITHOUT PREOPERATIVE CHEMOTHERAPY
3
作者 张艳敏 邢海平 +3 位作者 师晓天 陈克能 程邦昌 宋艳霞 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 1997年第3期72-75,共4页
Objective: The purpose of the present study is to detect characteristics of primary expression of mdr 1 gene in several neoplasms which has high morbidity in clinic. Methods: 151 resected samples, which are patholog... Objective: The purpose of the present study is to detect characteristics of primary expression of mdr 1 gene in several neoplasms which has high morbidity in clinic. Methods: 151 resected samples, which are pathologically malignant and clinically untreated before operation, were obtained from Anyang Cancer Hospital. All of them were investigated with RT PCR for the expression of mdr 1 gene and correlated each other. Besides, we evaluated the advantages of RT PCR in this study. Results: The mdr 1 gene expression rate of these 151 samples, including cancers of stomach and gastric cardia (n=51), esophagus (n=46), colorectum (n=16), breast (n=15), thyroid (n=10), lung (n=9), uterine cervix (n=4), was 33.3%, 37%, 31.3%, 13.2%, 40%, 55%, 0%, respectively. Conclusion: Compared with other methods, RT PCR for studying mdr 1 gene expression had certain advantages in simplicity, reliability, and accuracy. Overexpression of mdr 1 gene in these neoplasms suggested that cases should be distinguished before treatment according to MDR of tumor and to choose effective drugs for individual cancer patient. 展开更多
关键词 NEOPLASMS Drug resistance Gene expression mdr 1 gene Surgery.
下载PDF
Small Interfering RNA Targeting MDR1 Inhibits Ovarian Cancer Growth and Increases Efficacy of Chemotherapy in vivo
4
作者 Fu-jun LIU Guo-lan Gao +2 位作者 Kai-jia Tu Li-qun Yu Jun Gao 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2009年第4期318-324,共7页
Objective: To further validate a knockdown approach for circumventing the multidrug resistance gene (MDR1), we used small interfering RNA(siRNA) targeting MDR1 gene to inhibit the expression of MDR1 gene and P-gl... Objective: To further validate a knockdown approach for circumventing the multidrug resistance gene (MDR1), we used small interfering RNA(siRNA) targeting MDR1 gene to inhibit the expression of MDR1 gene and P-glycoprotein(P-gp) in vivo. Methods: Ascite tumor xenografts were established by implanting human ovarian carcinoma cells SKOV3/AR intraperitoneally into the nude mice. The mice were randomized into the following three treatment groups with each group six mice respectively: Taxol, Taxol with lipofectamine and Taxol with siRNA/MDR1- lipofectamine intraperitoneal injection. The tumor growth rate and the ascite growth rate of mice were investigated. The expressions of MDR1 gene and P-gp in mice were determined by reverse transcription-polymerase chain reaction(RT-PCR) and immunohistochemistry respctively. Results: The growth of tumors and ascites in mice treated with Taxol and siRNA/MDR1- lipofectamine was significantly inhibited compared with those in mice of other groups. After 28 days' treatment, the average tumor weight and ascite volume decreased by 43.6% and 29.7% in the group treated with Taxol and siRNA/MDRl-lipofectamine compared with these treated with Taxol alone (P〈0.001). The expressions of MDR1 gene and P-gp in the group treated with Taxol and siRNA/MDRl-lipofectamine were also decreased compared with those in the group treated with Taxol alone (P〈0.001). Conclusion: Small interfering RNA targeting-MDR1 can effectively and specifically suppress the expression of MDRl(P-glycoprotein) and inhibit ovarian cancer growth in vivo. 展开更多
关键词 RNA interference siRNA mdr1 gene Ovarian cancer Nude mice
下载PDF
RETROVIRAL MEDIATED EFFICIENT TRANSFER ANDEXPRESSION OF MULTIPLE DRUG RESISTANCE GENE TO HUMAN LEUKEMIC CELLS 被引量:6
5
作者 傅建新 王玮 +3 位作者 岑建军 李建勇 阮长耿 陈子兴 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2000年第2期120-124,共5页
Objective: To investigate retroviral-mediated transfer and expression of human multidrug resistance (MDR) gene MDR1 in leukemic cells. Methods: Human myeloid cells, K562 and NB4, were infected by MDR retrovirus from t... Objective: To investigate retroviral-mediated transfer and expression of human multidrug resistance (MDR) gene MDR1 in leukemic cells. Methods: Human myeloid cells, K562 and NB4, were infected by MDR retrovirus from the producer PA317/HaMDR, and the resistant cells were selected with cytotoxic drug. The transfer and expression of MDR1 gene was analyzed by using polymerase chain reaction (PCR), flow cytometry (FCM) and semisolid colonies cultivation. Results: The resistant cells, K562/MDR and NB4/MDR, in which integration of the exogenous MDR1 gene was confirmed by PCR analysis, displayed a typical MDR phenotype. The expression of MDR1 transgene was detected on truncated as well as full-length transcripts. Moreover, the resistant cells were P-glycoprotein postiive at 78.0% to 98.7% analyzed with FCM. The transduction efficieny in K562 cells was studied on suspension cultures and single-cell colonies. The transduction was more efficient in coculture system (67.9%-72.5%) than in supernatant system (33.1%~46.8%), while growth factors may improve the efficiency. Conclusion: Retrovirus could allow a functional transfer and expression of MDR1 gene in human leukemia cells, and MDR1 might act as a dominant selectable gene for coexpression with the genes of interest in gene therapy. 展开更多
关键词 Gene transfer RETROVIRUS mdr genes Gene expression LEUKEMIA Cell lines
下载PDF
Expression of multidrug resistance 1 gene and C3435T genetic polymorphism in peripheral blood of patients with intractable epilepsy 被引量:1
6
作者 Xueping Zheng Lan Tan +2 位作者 Jinghui Song Yan Wang Yanping Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第11期1269-1272,共4页
BACKGROUND: Increased expression of multidrug resistance 1 (MDR1) mRNA in peripheral blood of patients with intractable epilepsy is not due to epilepsy drugs, but epilepsy behavior. Monitoring MDR1 expression in pe... BACKGROUND: Increased expression of multidrug resistance 1 (MDR1) mRNA in peripheral blood of patients with intractable epilepsy is not due to epilepsy drugs, but epilepsy behavior. Monitoring MDR1 expression in peripheral blood is a target for MDR1 gene evaluation. OBJECTIVE: To investigate the influence of antiepileptic drugs and seizures on MDR expression in intractable epilepsy, and to analyze the genetic polymorphisms of C3435T in the MDRl gene. DESIGN, TIME AND SETTING: Factorial designs and comparative observations at the experimental center of the Affiliated Hospital of Qingdao Medical College, Qingdao University between October 2003 and October 2004. PARTICIPANTS: A total of 120 subjects were recruited from the epilepsy clinical department of the Affiliated Hospital of Qingdao Medical College. Four groups (n = 30) were classified according to statistical factorial design: intractable epilepsy, treatment response, no treatment, and normal control groups. METHODS: One-step semi-quantitative reverse-transcription polymerase chain reaction technology was used to test expressions of the MDR1 gene in 120 subjects. C3435T polymorphisms in intractable epilepsy group and normal control groups were analyzed by polymerase chain reaction-restriction fragment length polymorphism. MAIN OUTCOME MEASURES: Expression of MDR1 mRNA in the four groups, and C3435T genetic polymorphisms in intractable epilepsy and normal control groups. RESULTS: MDRl gene expression was increased in the intractable epilepsy group, due to the factor seizures, but not the antiepileptic drugs. However, the interaction between the two factors was not statistically significant. Of the 30 subjects in the intractable epilepsy group, the following genotypes were exhibited: 3 (10%) C/C genotype, 9 (30%) C/T genotype, and 18 (60%) T/T genotype at the site of C3435T, while 4 (13%), 10 (33%), and 16 (53%) subjects were determined to express these genotypes in the normal control group, respectively. C and T allele frequency were 25% and 75% in the intractable epilepsy group, and 30% and 70% in the normal control group, respectively. However, there was no statistical difference between the groups. CONCLUSION: Results demonstrated that seizures, not antiepileptic drugs, induced MDR1 gene expression in intractable epilepsy. Genetic polymorphisms of C3435T in the MDR1 gene did not contribute to the development of multidrug resistance in patients with intractable epilepsy. 展开更多
关键词 genetic polymorphism intractable epilepsy mdr1 gene multidrug resistance peripheral blood P-GLYCOPROTEIN
下载PDF
Detection and clinical significance of multidrug resistance-1 mRNA in bone marrow cells in children with acute lymphoblastic leukemia by real-time fluorescence quantitative RT-PCR 被引量:1
7
作者 Yuan Lu Runming Jin +3 位作者 Kun Yang Lirong Sun Yan Xia Xiuying Pang 《Journal of Nanjing Medical University》 2008年第3期153-158,共6页
Objective: Multidrug resistance(MDR) is one of the most important reasons for treatment failure and recurrence of acute leukemia. Its manifestations are different in children with acute lymphoblastic leukemia(ALL... Objective: Multidrug resistance(MDR) is one of the most important reasons for treatment failure and recurrence of acute leukemia. Its manifestations are different in children with acute lymphoblastic leukemia(ALL) which may be due to different detection methods. This study was to detect the expression of MDR1 mRNA in bone marrow cells of children with ALL by real-time fluorescence- quantitative reverse transcription polymerase-chain reaction(FQ-RT-PCR), and combine minimal residual desease(MRD) detection by flow cytometry(FCM) and to study their relationship with treatment response and prognosis of ALL. Methods:The MDR1 mRNA levels in bone marrow cells from 67 children with ALL[28 had newly diagnosed disease, 27 had achieved complete remission(CR), 12 recurrent] and 22 children without leukemia were detected by FQ-RT-PCR. MRD was detected by FCM. The patients were observed for 9-101 months, with a median of 64 months. Results:Standard curves of human MDR1 and GAPDH genes were constructed successfully. MDR1 mRNA was detected in all children with a positive rate of 100%. The mRNA level of MDR1 was similar among the newly diagnosed ALL group, CR group, and control group(P 〉 0.05), but significantly higher in the recurrence group than that in newly diagnosed disease group and control group(0.50 ± 0.55 vs. 0.09 ± 0.26 and 0.12 ± 0.23, P〈 0.05). 54 ALL patients were followed up, and it was found that MDR1 mRNA level was significantly higher in ALL patients within 3 years duration than that of ALL patients with 3-6 years and over 6 years duration(0.63 ± 0.56 vs. 0.11 ± 0.12 and 0.04 ± 0.06, P〈 0.01). For the 28 children with newly diagnosed disease, the MDR1 mRNA level was similar between WBC 〉 50 ~ 109 group and WBC〈50 × 10^9 group(P〉 0.05). In the 33 CR patients, the MDR1 mRNA level was significantly higher in MRD〉10a group than that in MRD〈10a group(0.39 ± 0.47 vs. 0.03 ± 0.03, P 〈 0.05). Conclusion:The sensitivity and specificity of FQ-RT-PCR in detecting MDR1 mRNA in bone marrowy cells of children with ALL patients are high. MDR1 mRNA is expressed in children with and without leukemia. MDR1 mRNA is highly expressed in the CR ALL patients with high MRD, recurrence and short duration(within 3 years). Monitoring MRD and the MDR1 mRNA level might be helpful for individual treatment. 展开更多
关键词 LEUKEMIA CHILDREN multidrug resistance mdr1 gene minimal residual disease real-time fluorescence quantitative RT-PCR
下载PDF
Reversion of Multidrug-Resistance by Proteasome Inhibitor Bortezomib in K562/DNR Cell Line
8
作者 Hui-han Wang Ying-chun Li +4 位作者 Ai-jun Liao Bei-bei Fu Wei Yang Zhuo-gang Liu Xiao-bin Wang 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2011年第1期69-73,共5页
Objective:To observe the reversion of multi-drug resistance by proteasome inhibitor bortezomib in K562/DNR cell line and to analyze the possible mechanism of reversion of multidrug-resistance.Methods:MTT method was ... Objective:To observe the reversion of multi-drug resistance by proteasome inhibitor bortezomib in K562/DNR cell line and to analyze the possible mechanism of reversion of multidrug-resistance.Methods:MTT method was used to determine the drug resistance of K562/DNR cells and the cellular toxicity of bortezomib.K562/DNR cells were cultured for 12 hours,24 hours and 36 hours with 100 μg/ml DNR only or plus 4 μg/L bortezomib.The expressions of NF-κB,IκB and P-gp of K562/DNR were detected with Western blot method,the activity of NF-κB was tested by ELISA method and the apoptosis rate was observed in each group respectively.Results:The IC50 of DNR on cells of K562/S and K562/DNR groups were 1.16 μg/ml and 50.43 μg/mL,respectively.The drug-resistant fold was 43.47.The IC10 of PS-341 on Cell strain K562/DNR was 4 μg/L.Therefore,4 μg/L was selected as the concentration for PS-341 to reverse drug-resistance in this study.DNR induced down-regulation of IκB expression,up-regulation of NF-κB and P-gp expression.After treatment with PS-341,a proteasome inhibitor,the IκB degradation was inhibited,IκB expression increased,NF-κB and P-gp expression decreased in a time dependent manner.Compared to DNR group,the NF-κB p65 activity of DNR+PS-341 group was decreased.Compared to corresponding DNR group,DNR induced apoptosis rate increases after addition of PS-341 in a time dependent manner.Conclusion:Proteasome inhibitor bortezomib can convert the leukemia cell drug resistance.The mechanism may be that bortezomib decreases the degradation of IκB and the expression of NF-κB and P-gp,therefore induces the apoptosis of multi-drug resistant cells. 展开更多
关键词 BORTEZOMIB NF-ΚB Multi-drug resistance mdr1 gene P-GP K562 cells
下载PDF
IDENTIFICATION OF DRUG RESISTANT RELATED cDNA IN LUNG ADENOCARCINOMA CELL LINES
9
作者 王洁 刘叙仪 +2 位作者 李西平 李振甫 张宏 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2001年第2期101-104,共4页
Objective: To clone multidrug resistance (MDR) related genes in lung adenocarcinoma cell lines. Methods: The differentially expressed cDNA fragments between A549 and A549 DDP cells were analyzed by mRNA differential d... Objective: To clone multidrug resistance (MDR) related genes in lung adenocarcinoma cell lines. Methods: The differentially expressed cDNA fragments between A549 and A549 DDP cells were analyzed by mRNA differential display PCR(DD RT-PCR). The fragments thus obtained were further analyzed by DNA sequencing and Northern blotting. Results: Three differentially expressed cDNA fragments were obtained and confirmed by Northern blot. Sequence analysis revealed that two of them were novel and one was 100% identical with ICE gene. Conclusion: Analyzing differentially expressed fragment between A549 and A549 DDP cells may be helpful for finding new MDR related genes. The drug resistance of A549 DDP cells may be related to the inhibition or down-regulation of ICE gene. 展开更多
关键词 A549 and A549 DDP cells mRNA differential display mdr related gene
下载PDF
Reversal of MDR1 gene-dependent multidrug resistance using short hairpin RNA expression vectors 被引量:12
10
作者 GANHui-zhu ZHANGGui-zhen +7 位作者 ZHAOJi-sheng ZHANGFeng-chun BULi-sha YANGShao-juan PIAOSong-lan DUZhen-wu GAOShen ZHENGDe-ming 《Chinese Medical Journal》 SCIE CAS CSCD 2005年第11期893-902,共10页
Background RNA interference using short hairpin RNA (shRNA) can mediate sequence-specific inhibition of gene expression in mammalian cells. A vector-based approach for synthesizing shRNA has been developed recently. O... Background RNA interference using short hairpin RNA (shRNA) can mediate sequence-specific inhibition of gene expression in mammalian cells. A vector-based approach for synthesizing shRNA has been developed recently. Overexpression of P-glycoprotein (P-gp), the MDR1 gene product, confers multidrug resistance (MDR) to cancer cells. In this study, we reversed MDR using shRNA expression vectors in a multidrug-resistant human breast cancer cell line (MCF-7/AdrR). Methods The two shRNA expression vectors were constructed and introduced into MCF-7/AdrR cells. Expression of MDR1 mRNA was assessed by RT-PCR, and P-gp expression was determined by Western Blot and immunocytochemistry. Apoptosis and sensitization of the breast cancer cells to doxorubicin were quantified by flow cytometry and methyl thiazolyl tetrazolium (MTT) assays, respectively. Cellular daunorubicin accumulation was assayed by laser confocal scanning microscopy (LCSM). Statistical significance of differences in mean values was evaluated by Student’s t tests. P<0.05 was considered statistically significant.Results In MCF-7/AdrA cells transfected with MDR1-A and MDR1-B shRNA expression vectors, RT-PCR showed that MDR1 mRNA expression was reduced by 40.9% (P<0.05), 30.1% (P<0.01) (transient transfection) and 37.6 % (P<0.05), 28.0% (P<0.01) (stable transfection), respectively. Western Blot and immunocytochemistry showed that P-gp expression was significantly and specifically inhibited. Resistance against doxorubicin was decreased from 162-fold to 109-fold (P<0.05), 54-fold (P<0.01) (transient transfection) and to 108-fold (P<0.05), 50-fold (P<0.01) (stable transfection). Furthermore, shRNA vectors significantly enhanced the cellular daunorubicin accumulation. The combination of shRNA vectors and doxorubicin significantly induced apoptosis in MCF-7/AdrR cells. Conclusions shRNA expression vectors effectively reduce MDR expression in a sustained fashion and can restore the sensitivity of drug-resistant cancer cells to conventional chemotherapeutic agents. 展开更多
关键词 multi-drug resistance · mdr · gene therapy · breast neoplasm · shRNA
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部