The lower bound of maximum predictable time can be formulated into a constrained nonlinear opti- mization problem, and the traditional solutions to this problem are the filtering method and the conditional nonlinear o...The lower bound of maximum predictable time can be formulated into a constrained nonlinear opti- mization problem, and the traditional solutions to this problem are the filtering method and the conditional nonlinear optimal perturbation (CNOP) method. Usually, the CNOP method is implemented with the help of a gradient descent algorithm based on the adjoint method, which is named the ADJ-CNOP. However, with the increasing improvement of actual prediction models, more and more physical processes are taken into consideration in models in the form of parameterization, thus giving rise to the on–off switch problem, which tremendously affects the effectiveness of the conventional gradient descent algorithm based on the ad- joint method. In this study, we attempted to apply a genetic algorithm (GA) to the CNOP method, named GA-CNOP, to solve the predictability problems involving on–off switches. As the precision of the filtering method depends uniquely on the division of the constraint region, its results were taken as benchmarks, and a series of comparisons between the ADJ-CNOP and the GA-CNOP were performed for the modified Lorenz equation. Results show that the GA-CNOP can always determine the accurate lower bound of maximum predictable time, even in non-smooth cases, while the ADJ-CNOP, owing to the effect of on–off switches, often yields the incorrect lower bound of maximum predictable time. Therefore, in non-smooth cases, using GAs to solve predictability problems is more effective than using the conventional optimization algorithm based on gradients, as long as genetic operators in GAs are properly configured.展开更多
Image segmentation is one of the earliest and most important stages of image processing and plays an important role in both qualitative and quantitative analysis of medical ultrasound images but ultrasound images have...Image segmentation is one of the earliest and most important stages of image processing and plays an important role in both qualitative and quantitative analysis of medical ultrasound images but ultrasound images have low level of contrast and are corrupted with strong speckle noise. Due to these effects, segmentation of ultrasound images is very challenging and traditional image segmentation methods may not be leads to satisfactory results. The active contour method has been one of the widely used techniques for image segmentation;however, due to low quality of ultrasound images, it has encountered difficulties. In this paper, we presented a segmental method combined genetic algorithm and active contour with an energy minimization procedure based on genetic algorithms. This method have been proposed to overcome some limits of classical active contours, as con-tour initialization and local minima (speckle noise), and have been successfully applied on medical ultrasound images. Experimental result on medical ultrasound image show that our presented method only can correctly segment the circular tissue’s on ultra-sound images.展开更多
基金supported bythe National Natural Science Foundation of China(Grant Nos40975063 and 40830955)
文摘The lower bound of maximum predictable time can be formulated into a constrained nonlinear opti- mization problem, and the traditional solutions to this problem are the filtering method and the conditional nonlinear optimal perturbation (CNOP) method. Usually, the CNOP method is implemented with the help of a gradient descent algorithm based on the adjoint method, which is named the ADJ-CNOP. However, with the increasing improvement of actual prediction models, more and more physical processes are taken into consideration in models in the form of parameterization, thus giving rise to the on–off switch problem, which tremendously affects the effectiveness of the conventional gradient descent algorithm based on the ad- joint method. In this study, we attempted to apply a genetic algorithm (GA) to the CNOP method, named GA-CNOP, to solve the predictability problems involving on–off switches. As the precision of the filtering method depends uniquely on the division of the constraint region, its results were taken as benchmarks, and a series of comparisons between the ADJ-CNOP and the GA-CNOP were performed for the modified Lorenz equation. Results show that the GA-CNOP can always determine the accurate lower bound of maximum predictable time, even in non-smooth cases, while the ADJ-CNOP, owing to the effect of on–off switches, often yields the incorrect lower bound of maximum predictable time. Therefore, in non-smooth cases, using GAs to solve predictability problems is more effective than using the conventional optimization algorithm based on gradients, as long as genetic operators in GAs are properly configured.
文摘Image segmentation is one of the earliest and most important stages of image processing and plays an important role in both qualitative and quantitative analysis of medical ultrasound images but ultrasound images have low level of contrast and are corrupted with strong speckle noise. Due to these effects, segmentation of ultrasound images is very challenging and traditional image segmentation methods may not be leads to satisfactory results. The active contour method has been one of the widely used techniques for image segmentation;however, due to low quality of ultrasound images, it has encountered difficulties. In this paper, we presented a segmental method combined genetic algorithm and active contour with an energy minimization procedure based on genetic algorithms. This method have been proposed to overcome some limits of classical active contours, as con-tour initialization and local minima (speckle noise), and have been successfully applied on medical ultrasound images. Experimental result on medical ultrasound image show that our presented method only can correctly segment the circular tissue’s on ultra-sound images.