期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Automatic target recognition of moving target based on empirical mode decomposition and genetic algorithm support vector machine 被引量:3
1
作者 张军 欧建平 占荣辉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1389-1396,共8页
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S... In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively. 展开更多
关键词 automatic target recognition(ATR) moving target empirical mode decomposition genetic algorithm support vector machine
下载PDF
Nonlinear model predictive control based on support vector machine and genetic algorithm 被引量:5
2
作者 冯凯 卢建刚 陈金水 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2048-2052,共5页
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ... This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection. 展开更多
关键词 support vector machine genetic algorithm Nonlinear model predictive control Neural network Modeling
下载PDF
Combined forecast method of HMM and LS-SVM about electronic equipment state based on MAGA 被引量:1
3
作者 Jianzhong Zhao Jianqiu Deng +1 位作者 Wen Ye Xiaofeng Lü 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期730-738,共9页
For the deficiency that the traditional single forecast methods could not forecast electronic equipment states, a combined forecast method based on the hidden Markov model(HMM) and least square support vector machin... For the deficiency that the traditional single forecast methods could not forecast electronic equipment states, a combined forecast method based on the hidden Markov model(HMM) and least square support vector machine(LS-SVM) is presented. The multi-agent genetic algorithm(MAGA) is used to estimate parameters of HMM to overcome the problem that the Baum-Welch algorithm is easy to fall into local optimal solution. The state condition probability is introduced into the HMM modeling process to reduce the effect of uncertain factors. MAGA is used to estimate parameters of LS-SVM. Moreover, pruning algorithms are used to estimate parameters to get the sparse approximation of LS-SVM so as to increase the ranging performance. On the basis of these, the combined forecast model of electronic equipment states is established. The example results show the superiority of the combined forecast model in terms of forecast precision,calculation speed and stability. 展开更多
关键词 parameter estimation hidden Markov model(HMM) least square support vector machine(LS-SVM) multi-agent genetic algorithm(MAGA) state forecast
下载PDF
Simultaneous characterization of multiple properties of solid and liquid phases in crystallization processes using NIR 被引量:7
4
作者 Chao Y. Ma Xue Z. Wang 《Particuology》 SCIE EI CAS CSCD 2011年第6期589-597,共9页
Near infrared spectroscopy (NIR) is now probably the most popular process analytical technology (PAT) for pharmaceutical and some other industries. However, unlike mid-IR, NIR is known to have difficulties in moni... Near infrared spectroscopy (NIR) is now probably the most popular process analytical technology (PAT) for pharmaceutical and some other industries. However, unlike mid-IR, NIR is known to have difficulties in monitoring crystallization or precipitation processes because the existence of solids could cause distortion of the spectra. This phenomenon, seen as unfavorable previously, is however an indication that NIR spectra contain rich information about both solids and liquids, giving the possibility of using the same instrument for multiple property characterization. In this study, transflectance NIR calibration data was obtained using solutions and slurries of varied solution concentration, particle size, solid concentration and temperature. The data was used to build calibration models for prediction of the multiple properties of both phases. Predictive models were developed for this challenging application using an approach that combines genetic algorithm (GA) and support vector machine (SVM). GA is used for wavelength selection and SVM for mode building. The new GA-SVM approach is shown to outperform other methods including GA-PLS (partial least squares) and traditional SVM. NIR is thus successfully applied to monitoring seeded and unseeded cooling crystallization processes of L-glutamic acid. 展开更多
关键词 Process analytical technology Near infrared spectroscopy support vector machine genetic algorithm Wavelength selection Cooling crystallization
原文传递
Anomaly detection of hot components in gas turbine based on frequent pattern extraction 被引量:2
5
作者 LIU JinFu ZHU LinHai +3 位作者 MA YuJia LIU Jiao ZHOU WeiXing YU DaRen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第4期567-586,共20页
Hot components operate in a high-temperature and high-pressure environment. The occurrence of a fault in hot components leads to high economic losses. In general, exhaust gas temperature(EGT) is used to monitor the pe... Hot components operate in a high-temperature and high-pressure environment. The occurrence of a fault in hot components leads to high economic losses. In general, exhaust gas temperature(EGT) is used to monitor the performance of hot components.However, during the early stages of a failure, the fault information is weak, and is simultaneously affected by various types of interference, such as the complex working conditions, ambient conditions, gradual performance degradation of the compressors and turbines, and noise. Additionally, inadequate effective information of the gas turbine also restricts the establishment of the detection model. To solve the above problems, this paper proposes an anomaly detection method based on frequent pattern extraction. A frequent pattern model(FPM) is applied to indicate the inherent regularity of change in EGT occurring from different types of interference. In this study, based on a genetic algorithm and support vector machine regression, the relationship model between the EGT and interference was tentatively built. The modeling accuracy was then further improved through the selection of the kernel function and training data. Experiments indicate that the optimal kernel function is linear and that the optimal training data should be balanced in addition to covering the appropriate range of operating conditions and ambient temperature. Furthermore, the thresholds based on the Pauta criterion that is automatically obtained during the modeling process, are used to determine whether hot components are operating abnormally. Moreover, the FPM is compared with the similarity theory, which demonstrates that the FPM can better suppress the effect of the component performance degradation and fuel heat value fluctuation. Finally, the effectiveness of the proposed method is validated on seven months of actual data obtained from a Titan130 gas turbine on an offshore oil platform. The results indicate that the proposed method can sensitively detect malfunctions in hot components during the early stages of a fault, and is robust to various types of interference. 展开更多
关键词 frequent pattern model(FPM) support vector machine regression(SVR) genetic algorithm(GA) gas turbine hot components anomaly detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部