Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall er...Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster.展开更多
Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been...Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles.展开更多
Constellations design for regional terrestrial-satellite network can strengthen the coverage for incomplete terrestrial cellular network. In this paper, a regional satellite constellation design scheme with multiple f...Constellations design for regional terrestrial-satellite network can strengthen the coverage for incomplete terrestrial cellular network. In this paper, a regional satellite constellation design scheme with multiple feature points and multiple optimization indicators is proposed by comprehensively considering multi-objective optimization and genetic algorithm, and "the Belt and Road" model is presented in the way of dividing over 70 nations into three regular target areas. Following this, we formulate the optimization model and devise a multi-objective genetic algorithm suited for the regional area with the coverage rate under simulating, computing and determining. Meanwhile, the total number of satellites in the constellation is reduced by calculating the ratio of actual coverage of a single-orbit constellation and the area of targets. Moreover, the constellations' performances of the proposed scheme are investigated with the connection of C++ and Satellite Tool Kit(STK). Simulation results show that the designed satellite constellations can achieve a good coverage of the target areas.展开更多
In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic alg...In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic algorithm is adopted to construct the blade shape. The blade is stacked by the center of gravity in radial direction with five sections. For each blade section, independent suction and pressure sides are constructed from the camber line using Bezier curves. Three-dimensional flow analysis is carried out to verify the performance of the new blade. It is found that the new blade has improved the blade performance by 0.5%. Consequently, it is verified that the new blade is effective to improve the turbine internal efficiency and to lower the turbine weight and manufacturing cost by reducing the blade number by about 15%.展开更多
As the idea of simulated annealing (SA) is introduced into the fitness function, an improved genetic algorithm (GA) is proposed to perform the optimal design of a pressure vessel which aims to attain the minimum weigh...As the idea of simulated annealing (SA) is introduced into the fitness function, an improved genetic algorithm (GA) is proposed to perform the optimal design of a pressure vessel which aims to attain the minimum weight under burst pressure con- straint. The actual burst pressure is calculated using the arc-length and restart analysis in finite element analysis (FEA). A penalty function in the fitness function is proposed to deal with the constrained problem. The effects of the population size and the number of generations in the GA on the weight and burst pressure of the vessel are explored. The optimization results using the proposed GA are also compared with those using the simple GA and the conventional Monte Carlo method.展开更多
Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of t...Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of the system profit,the uncertain demand of logistics network is measured by interval variables and interval parameters,and an interval planning model of discrete logistics network is established.The risk coefficient and maximum constrained deviation are defined to realize the certain transformation of the model.By integrating interval algorithm and genetic algorithm,an interval hierarchical optimal genetic algorithm is proposed to solve the model.It is shown by a tested example that in the same scenario condition an interval solution[3275.3,3 603.7]can be obtained by the model and algorithm which is obviously better than the single precise optimal solution by stochastic or fuzzy algorithm,so it can be reflected that the model and algorithm have more stronger operability and the solution result has superiority to scenario decision.展开更多
A method for optimizing automotive doors under multiple criteria involving the side impact, stiffness, natural frequency, and structure weight is presented. Metamodeling technique is employed to construct approximatio...A method for optimizing automotive doors under multiple criteria involving the side impact, stiffness, natural frequency, and structure weight is presented. Metamodeling technique is employed to construct approximations to replace the high computational simulation models. The approximating functions for stiffness and natural frequency are constructed using Taylor series approximation. Three popular approximation techniques,i.e.polynomial response surface (PRS), stepwise regression (SR), and Kriging are studied on their accuracy in the construction of side impact functions. Uniform design is employed to sample the design space of the door impact analysis. The optimization problem is solved by a multi-objective genetic algorithm. It is found that SR technique is superior to PRS and Kriging techniques in terms of accuracy in this study. The numerical results demonstrate that the method successfully generates a well-spread Pareto optimal set. From this Pareto optimal set, decision makers can select the most suitable design according to the vehicle program and its application.展开更多
Vortex induced vibration(VIV)is a challenge in ocean engineering.Several devices including fairings have been designed to suppress VIV.However,how to optimize the design of suppression devices is still a problem to be...Vortex induced vibration(VIV)is a challenge in ocean engineering.Several devices including fairings have been designed to suppress VIV.However,how to optimize the design of suppression devices is still a problem to be solved.In this paper,an optimization design methodology is presented based on data-driven models and genetic algorithm(GA).Data-driven models are introduced to substitute complex physics-based equations.GA is used to rapidly search for the optimal suppression device from all possible solutions.Taking fairings as example,VIV response database for different fairings is established based on parameterized models in which model sections of fairings are controlled by several control points and Bezier curves.Then a data-driven model,which can predict the VIV response of fairings with different sections accurately and efficiently,is trained through BP neural network.Finally,a comprehensive optimization method and process is proposed based on GA and the data-driven model.The proposed method is demonstrated by its application to a case.It turns out that the proposed method can perform the optimization design of fairings effectively.VIV can be reduced obviously through the optimization design.展开更多
In this paper, the problem of reliability-based optimal design of simple offshore platform is studied, and a nonlinear fatigue damage model based on damage mechanics and genetic algorithms are used in the fatigue reli...In this paper, the problem of reliability-based optimal design of simple offshore platform is studied, and a nonlinear fatigue damage model based on damage mechanics and genetic algorithms are used in the fatigue reliability optimum design of the structure under stochastic wave load. The fatigue damage model and the yield failure reliability analyzing model are used in the paper. The reliability of the models and the effectiveness of genetic algorithm are shown by the results of optimum design.展开更多
The genetic algorithm was used in optimal design of deep jet method pile.The cost of deep jet method pile in one unit area of foundation was taken as the objective function.All the restrains were listed following the ...The genetic algorithm was used in optimal design of deep jet method pile.The cost of deep jet method pile in one unit area of foundation was taken as the objective function.All the restrains were listed following the corresponding specification.Suggestions were proposed and the modified.The real-coded Genetic Algorithm was given to deal with the problems of excessive computational cost and premature convergence.Software system of optimal design of deep jet method pile was developed.展开更多
This paper presents an aerodynamic design of a small transonic fan by 3D viscous RNS solver combined with genetic algorithms.The aerodynamic design system based on the 3D viscous RNS solver reduces the dependency on t...This paper presents an aerodynamic design of a small transonic fan by 3D viscous RNS solver combined with genetic algorithms.The aerodynamic design system based on the 3D viscous RNS solver reduces the dependency on the design experience for designers.Furthermore the optimum with genetic algorithms is an effective method for improving the transonic fan performance as a part of the design system.The design result showed that the transonic fan designed by this method reaches the design requirement even with more efficiency value.展开更多
A flying-body is considered as the reference model, the optimized mathematical model is established. The genetic operators are designed and algorithm parameters are selected reasonably. The scheme control signal in sh...A flying-body is considered as the reference model, the optimized mathematical model is established. The genetic operators are designed and algorithm parameters are selected reasonably. The scheme control signal in short range top attack flight trajectory is optimized by using genetic algorithm. The short range top attack trajectory designed meets the design requirements, with the increase of the falling angle and the decrease of the minimum range. The application of genetic algorithm to top attack trajectory optimization is proved to be feasibly and effectively according to the analyses of results.展开更多
The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical propertie...The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical properties of deposited metals directly according to the components of coating on the electrodes. In this paper an electrode intelligent design system is developed by means of fuzzy neural network technology and genetic algorithm,, dynamic link library, object linking and embedding and multithreading. The front-end application and customer interface of the system is realized by using visual C ++ program language and taking SQL Server 2000 as background database. It realizes series functions including automatic design of electrode formula, intelligent prediction of electrode properties, inquiry of electrode information, output of process report based on normalized template and electronic storage and search of relative files.展开更多
Building structure is like the skeleton of the building,it bears the effects of various forces and forms a supporting system,which is the material basis on which the building depends.Hence building structure design is...Building structure is like the skeleton of the building,it bears the effects of various forces and forms a supporting system,which is the material basis on which the building depends.Hence building structure design is a vital part in architecture design,architects often explore novel applications of their technologies for building structure innovation.However,such searches relied on experiences,expertise or gut feeling.In this paper,a new design method for the optimal building frame column design based on the genetic algorithm is proposed.First of all,in order to construct the optimal model of the building frame column,building units are divided into three categories in general:building bottom,main building and building roof.Secondly,the genetic algorithm is introduced to optimize the building frame column.In the meantime,a PGA-Skeleton based concurrent genetic algorithm design plan is proposed to improve the optimization efficiency of the genetic algorithm.Finally,effectiveness of the mentioned algorithm is verified through the simulation experiment.展开更多
An optimum design model has been proposed for carbon/carbon ablative property based on genetic algorithm,in which the optimum parameters are the number of woven satins,K of fiber bundles,layers per unit height,the ave...An optimum design model has been proposed for carbon/carbon ablative property based on genetic algorithm,in which the optimum parameters are the number of woven satins,K of fiber bundles,layers per unit height,the average distance of puncture fibers in Z direction and Ply Stacking angle,and the constraint conditions are the density and diameter of carbon fibers and the density of carbon matrix.The results demonstrate that after optimization,the overall height of the ablative carbon/carbon surface is reduced by 56.5%,the standard deviation is reduced by 34.9% and the surface roughness is reduced by 12.6%,which suggests the remarkable improvement of ablative homogeneity.The present investigation can provide practical methodology for the optimum design of carbon/carbon ablative property and the development of new carbon/carbon composites.展开更多
Radar cross section (RCS) reduction technologies are very important in survivability of the military naval vessels. Ship appearance shaping as an effective countermeasure of RCS reduction redirects the scattered energ...Radar cross section (RCS) reduction technologies are very important in survivability of the military naval vessels. Ship appearance shaping as an effective countermeasure of RCS reduction redirects the scattered energy from one angular region of interest in space to another region of little interest. To decrease the scattering electromagnetic signals from ship scientifically, optimization methods should be introduced in shaping design. Based on the assumption of the characteristic section design method, mathematical formulations for optimal shaping design were established. Because of the computation-intensive analysis and singularity in shaping optimization, the response surface method (RSM) combined genetic algorithm (GA) was proposed. The poly-nomial response surface method was adopted in model approximation. Then genetic algorithms were employed to solve the surrogate optimization problem. By comparison RCS of the conventional and the optimal design, the superiority and effectiveness of proposed design methodology were verified.展开更多
The modified genetic algorithm was used for the optimal design of supporting structure in deep pits.Based on the common genetic algorithm, using niche technique and reserving the optimum individual the modified geneti...The modified genetic algorithm was used for the optimal design of supporting structure in deep pits.Based on the common genetic algorithm, using niche technique and reserving the optimum individual the modified genetic algorithm was presented. By means of the practical engineering, the modified genetic algorithm not only has more expedient convergence, but also can enhance security and operation efficiency.展开更多
Obtaining the optimal values of the parameters for th e design of a required mould and the operation of the moulding process are diffi cult, this is due to the complexity of product geometry and the variation of pla s...Obtaining the optimal values of the parameters for th e design of a required mould and the operation of the moulding process are diffi cult, this is due to the complexity of product geometry and the variation of pla stic material properties. The typical parameters for the mould design and mouldi ng process are melt flow length, injection pressure, holding pressure, back pres sure, injection speed, melt temperature, mould temperature, clamping force, inje ction time, holding time and cooling time. This paper discusses the difficulties of using the current computer aided optimization methods to acquire the values of the parameters. A method that is based on the concept of genetic algorithm is proposed to overcome the difficulties. The proposed method describes in details on how to attain the optimal values of the parameters form a given product geom etry.展开更多
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic...Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods.展开更多
This paper treats multi-objective problem for manufacturing process design. A purpose of the process design is to decide combinations of work elements assigned to different work centers. Multiple work elements are ord...This paper treats multi-objective problem for manufacturing process design. A purpose of the process design is to decide combinations of work elements assigned to different work centers. Multiple work elements are ordinarily assigned to each center. Here, infeasible solutions are easily generated by precedence relationship of work elements in process design. The number of infeasible solutions generated is ordinarily larger than that of feasible solutions generated in the process. Therefore, feasible and infeasible solutions are located in any neighborhood in solution space. It is difficult to seek high quality Pareto solutions in this problem by using conventional multi-objective evolutional algorithms. We consider that the problem includes difficulty to seek high quality solutions by the following characteristics: (1) Since infeasible solutions are resemble to good feasible solutions, many infeasible solutions which have good values of objective functions are easily sought in the search process, (2) Infeasible solutions are useful to select new variable conditions generating good feasible solutions in search process. In this study, a multi-objective genetic algorithm including local search is proposed using these characteristics. Maximum value of average operation times and maximum value of dispersion of operation time in all work centers are used as objective functions to promote productivity. The optimal weighted coefficient is introduced to control the ratio of feasible solutions to all solutions selected in crossover and selection process in the algorithm. This paper shows the effectiveness of the proposed algorithm on simple model.展开更多
基金funded by Shanghai Natural Science Foundation(No.12ZR1414700)。
文摘Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA11A127)
文摘Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles.
基金jointly supported by the National Natural Science Foundation in China (No.61601075)the Natural Science Foundation Project of CQ CSTC (No.cstc2016jcyj A0174)
文摘Constellations design for regional terrestrial-satellite network can strengthen the coverage for incomplete terrestrial cellular network. In this paper, a regional satellite constellation design scheme with multiple feature points and multiple optimization indicators is proposed by comprehensively considering multi-objective optimization and genetic algorithm, and "the Belt and Road" model is presented in the way of dividing over 70 nations into three regular target areas. Following this, we formulate the optimization model and devise a multi-objective genetic algorithm suited for the regional area with the coverage rate under simulating, computing and determining. Meanwhile, the total number of satellites in the constellation is reduced by calculating the ratio of actual coverage of a single-orbit constellation and the area of targets. Moreover, the constellations' performances of the proposed scheme are investigated with the connection of C++ and Satellite Tool Kit(STK). Simulation results show that the designed satellite constellations can achieve a good coverage of the target areas.
文摘In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic algorithm is adopted to construct the blade shape. The blade is stacked by the center of gravity in radial direction with five sections. For each blade section, independent suction and pressure sides are constructed from the camber line using Bezier curves. Three-dimensional flow analysis is carried out to verify the performance of the new blade. It is found that the new blade has improved the blade performance by 0.5%. Consequently, it is verified that the new blade is effective to improve the turbine internal efficiency and to lower the turbine weight and manufacturing cost by reducing the blade number by about 15%.
基金Project (Nos. 2006BAK04A02-02 and 2006BAK02B02-08) sup-ported by the National Key Technology R&D Program, China
文摘As the idea of simulated annealing (SA) is introduced into the fitness function, an improved genetic algorithm (GA) is proposed to perform the optimal design of a pressure vessel which aims to attain the minimum weight under burst pressure con- straint. The actual burst pressure is calculated using the arc-length and restart analysis in finite element analysis (FEA). A penalty function in the fitness function is proposed to deal with the constrained problem. The effects of the population size and the number of generations in the GA on the weight and burst pressure of the vessel are explored. The optimization results using the proposed GA are also compared with those using the simple GA and the conventional Monte Carlo method.
基金Project(51178061)supported by the National Natural Science Foundation of ChinaProject(2010FJ6016)supported by Hunan Provincial Science and Technology,China+1 种基金Project(12C0015)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(13JJ3072)supported by Hunan Provincial Natural Science Foundation of China
文摘Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of the system profit,the uncertain demand of logistics network is measured by interval variables and interval parameters,and an interval planning model of discrete logistics network is established.The risk coefficient and maximum constrained deviation are defined to realize the certain transformation of the model.By integrating interval algorithm and genetic algorithm,an interval hierarchical optimal genetic algorithm is proposed to solve the model.It is shown by a tested example that in the same scenario condition an interval solution[3275.3,3 603.7]can be obtained by the model and algorithm which is obviously better than the single precise optimal solution by stochastic or fuzzy algorithm,so it can be reflected that the model and algorithm have more stronger operability and the solution result has superiority to scenario decision.
基金Supported by National"863"Program of China (No.2006AA04Z127) .
文摘A method for optimizing automotive doors under multiple criteria involving the side impact, stiffness, natural frequency, and structure weight is presented. Metamodeling technique is employed to construct approximations to replace the high computational simulation models. The approximating functions for stiffness and natural frequency are constructed using Taylor series approximation. Three popular approximation techniques,i.e.polynomial response surface (PRS), stepwise regression (SR), and Kriging are studied on their accuracy in the construction of side impact functions. Uniform design is employed to sample the design space of the door impact analysis. The optimization problem is solved by a multi-objective genetic algorithm. It is found that SR technique is superior to PRS and Kriging techniques in terms of accuracy in this study. The numerical results demonstrate that the method successfully generates a well-spread Pareto optimal set. From this Pareto optimal set, decision makers can select the most suitable design according to the vehicle program and its application.
基金supported by the National Natural Science Foundation of China(Grant No.51809279)the Major National Science and Technology Program(Grant No.2016ZX05028-001-05)+1 种基金Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT14R58)the Fundamental Research Funds for the Central Universities,that is,the Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment(Grant No.20CX02302A).
文摘Vortex induced vibration(VIV)is a challenge in ocean engineering.Several devices including fairings have been designed to suppress VIV.However,how to optimize the design of suppression devices is still a problem to be solved.In this paper,an optimization design methodology is presented based on data-driven models and genetic algorithm(GA).Data-driven models are introduced to substitute complex physics-based equations.GA is used to rapidly search for the optimal suppression device from all possible solutions.Taking fairings as example,VIV response database for different fairings is established based on parameterized models in which model sections of fairings are controlled by several control points and Bezier curves.Then a data-driven model,which can predict the VIV response of fairings with different sections accurately and efficiently,is trained through BP neural network.Finally,a comprehensive optimization method and process is proposed based on GA and the data-driven model.The proposed method is demonstrated by its application to a case.It turns out that the proposed method can perform the optimization design of fairings effectively.VIV can be reduced obviously through the optimization design.
基金This work was financially supported by the National Science Foundation of China
文摘In this paper, the problem of reliability-based optimal design of simple offshore platform is studied, and a nonlinear fatigue damage model based on damage mechanics and genetic algorithms are used in the fatigue reliability optimum design of the structure under stochastic wave load. The fatigue damage model and the yield failure reliability analyzing model are used in the paper. The reliability of the models and the effectiveness of genetic algorithm are shown by the results of optimum design.
文摘The genetic algorithm was used in optimal design of deep jet method pile.The cost of deep jet method pile in one unit area of foundation was taken as the objective function.All the restrains were listed following the corresponding specification.Suggestions were proposed and the modified.The real-coded Genetic Algorithm was given to deal with the problems of excessive computational cost and premature convergence.Software system of optimal design of deep jet method pile was developed.
基金Sponsored by the Major State Basic Research Development Progrma of China(Grant No. 2007CB210104)
文摘This paper presents an aerodynamic design of a small transonic fan by 3D viscous RNS solver combined with genetic algorithms.The aerodynamic design system based on the 3D viscous RNS solver reduces the dependency on the design experience for designers.Furthermore the optimum with genetic algorithms is an effective method for improving the transonic fan performance as a part of the design system.The design result showed that the transonic fan designed by this method reaches the design requirement even with more efficiency value.
文摘A flying-body is considered as the reference model, the optimized mathematical model is established. The genetic operators are designed and algorithm parameters are selected reasonably. The scheme control signal in short range top attack flight trajectory is optimized by using genetic algorithm. The short range top attack trajectory designed meets the design requirements, with the increase of the falling angle and the decrease of the minimum range. The application of genetic algorithm to top attack trajectory optimization is proved to be feasibly and effectively according to the analyses of results.
文摘The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical properties of deposited metals directly according to the components of coating on the electrodes. In this paper an electrode intelligent design system is developed by means of fuzzy neural network technology and genetic algorithm,, dynamic link library, object linking and embedding and multithreading. The front-end application and customer interface of the system is realized by using visual C ++ program language and taking SQL Server 2000 as background database. It realizes series functions including automatic design of electrode formula, intelligent prediction of electrode properties, inquiry of electrode information, output of process report based on normalized template and electronic storage and search of relative files.
文摘Building structure is like the skeleton of the building,it bears the effects of various forces and forms a supporting system,which is the material basis on which the building depends.Hence building structure design is a vital part in architecture design,architects often explore novel applications of their technologies for building structure innovation.However,such searches relied on experiences,expertise or gut feeling.In this paper,a new design method for the optimal building frame column design based on the genetic algorithm is proposed.First of all,in order to construct the optimal model of the building frame column,building units are divided into three categories in general:building bottom,main building and building roof.Secondly,the genetic algorithm is introduced to optimize the building frame column.In the meantime,a PGA-Skeleton based concurrent genetic algorithm design plan is proposed to improve the optimization efficiency of the genetic algorithm.Finally,effectiveness of the mentioned algorithm is verified through the simulation experiment.
基金Sponsored by the National Natural Science Foundation of China(Grant No.1057244)
文摘An optimum design model has been proposed for carbon/carbon ablative property based on genetic algorithm,in which the optimum parameters are the number of woven satins,K of fiber bundles,layers per unit height,the average distance of puncture fibers in Z direction and Ply Stacking angle,and the constraint conditions are the density and diameter of carbon fibers and the density of carbon matrix.The results demonstrate that after optimization,the overall height of the ablative carbon/carbon surface is reduced by 56.5%,the standard deviation is reduced by 34.9% and the surface roughness is reduced by 12.6%,which suggests the remarkable improvement of ablative homogeneity.The present investigation can provide practical methodology for the optimum design of carbon/carbon ablative property and the development of new carbon/carbon composites.
基金the National Natural Science Founda-tion of China (No. 10672100)
文摘Radar cross section (RCS) reduction technologies are very important in survivability of the military naval vessels. Ship appearance shaping as an effective countermeasure of RCS reduction redirects the scattered energy from one angular region of interest in space to another region of little interest. To decrease the scattering electromagnetic signals from ship scientifically, optimization methods should be introduced in shaping design. Based on the assumption of the characteristic section design method, mathematical formulations for optimal shaping design were established. Because of the computation-intensive analysis and singularity in shaping optimization, the response surface method (RSM) combined genetic algorithm (GA) was proposed. The poly-nomial response surface method was adopted in model approximation. Then genetic algorithms were employed to solve the surrogate optimization problem. By comparison RCS of the conventional and the optimal design, the superiority and effectiveness of proposed design methodology were verified.
文摘The modified genetic algorithm was used for the optimal design of supporting structure in deep pits.Based on the common genetic algorithm, using niche technique and reserving the optimum individual the modified genetic algorithm was presented. By means of the practical engineering, the modified genetic algorithm not only has more expedient convergence, but also can enhance security and operation efficiency.
文摘Obtaining the optimal values of the parameters for th e design of a required mould and the operation of the moulding process are diffi cult, this is due to the complexity of product geometry and the variation of pla stic material properties. The typical parameters for the mould design and mouldi ng process are melt flow length, injection pressure, holding pressure, back pres sure, injection speed, melt temperature, mould temperature, clamping force, inje ction time, holding time and cooling time. This paper discusses the difficulties of using the current computer aided optimization methods to acquire the values of the parameters. A method that is based on the concept of genetic algorithm is proposed to overcome the difficulties. The proposed method describes in details on how to attain the optimal values of the parameters form a given product geom etry.
文摘Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods.
文摘This paper treats multi-objective problem for manufacturing process design. A purpose of the process design is to decide combinations of work elements assigned to different work centers. Multiple work elements are ordinarily assigned to each center. Here, infeasible solutions are easily generated by precedence relationship of work elements in process design. The number of infeasible solutions generated is ordinarily larger than that of feasible solutions generated in the process. Therefore, feasible and infeasible solutions are located in any neighborhood in solution space. It is difficult to seek high quality Pareto solutions in this problem by using conventional multi-objective evolutional algorithms. We consider that the problem includes difficulty to seek high quality solutions by the following characteristics: (1) Since infeasible solutions are resemble to good feasible solutions, many infeasible solutions which have good values of objective functions are easily sought in the search process, (2) Infeasible solutions are useful to select new variable conditions generating good feasible solutions in search process. In this study, a multi-objective genetic algorithm including local search is proposed using these characteristics. Maximum value of average operation times and maximum value of dispersion of operation time in all work centers are used as objective functions to promote productivity. The optimal weighted coefficient is introduced to control the ratio of feasible solutions to all solutions selected in crossover and selection process in the algorithm. This paper shows the effectiveness of the proposed algorithm on simple model.