The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To ge...The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To get solutions in determining routes which are realistic and very close to the actual solution, we use heuristics and metaheuristics which are of the combinatorial optimization type. A literature review of VRPTW, TDVRP, and a metaheuristic such as the genetic algorithm was conducted. In this paper, the implementation of the VRPTW and its extension, the time-dependent VRPTW (TDVRPTW) has been carried out using the model as well as metaheuristics such as the genetic algorithm (GA). The algorithms were implemented, using Matlab and HeuristicLab optimization software. A plugin was developed using Visual C# and DOT NET framework 4.5. Results were tested using Solomon’s 56 benchmark instances classified into groups such as C1, C2, R1, R2, RC1, RC2, with 100 customer nodes, 25 vehicles and each vehicle capacity of 200. The results were comparable to the earlier algorithms developed and in some cases the current algorithm yielded better results in terms of total distance travelled and the average number of vehicles used.展开更多
Due to the complicated background of objectives and speckle noise, it is almost impossible to extract roads directly from original synthetic aperture radar(SAR) images. A method is proposed for extraction of road netw...Due to the complicated background of objectives and speckle noise, it is almost impossible to extract roads directly from original synthetic aperture radar(SAR) images. A method is proposed for extraction of road network from high-resolution SAR image. Firstly, fuzzy C means is used to classify the filtered SAR image unsupervisedly, and the road pixels are isolated from the image to simplify the extraction of road network. Secondly, according to the features of roads and the membership of pixels to roads, a road model is constructed, which can reduce the extraction of road network to searching globally optimization continuous curves which pass some seed points. Finally, regarding the curves as individuals and coding a chromosome using integer code of variance relative to coordinates, the genetic operations are used to search global optimization roads. The experimental results show that the algorithm can effectively extract road network from high-resolution SAR images.展开更多
文摘The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To get solutions in determining routes which are realistic and very close to the actual solution, we use heuristics and metaheuristics which are of the combinatorial optimization type. A literature review of VRPTW, TDVRP, and a metaheuristic such as the genetic algorithm was conducted. In this paper, the implementation of the VRPTW and its extension, the time-dependent VRPTW (TDVRPTW) has been carried out using the model as well as metaheuristics such as the genetic algorithm (GA). The algorithms were implemented, using Matlab and HeuristicLab optimization software. A plugin was developed using Visual C# and DOT NET framework 4.5. Results were tested using Solomon’s 56 benchmark instances classified into groups such as C1, C2, R1, R2, RC1, RC2, with 100 customer nodes, 25 vehicles and each vehicle capacity of 200. The results were comparable to the earlier algorithms developed and in some cases the current algorithm yielded better results in terms of total distance travelled and the average number of vehicles used.
文摘Due to the complicated background of objectives and speckle noise, it is almost impossible to extract roads directly from original synthetic aperture radar(SAR) images. A method is proposed for extraction of road network from high-resolution SAR image. Firstly, fuzzy C means is used to classify the filtered SAR image unsupervisedly, and the road pixels are isolated from the image to simplify the extraction of road network. Secondly, according to the features of roads and the membership of pixels to roads, a road model is constructed, which can reduce the extraction of road network to searching globally optimization continuous curves which pass some seed points. Finally, regarding the curves as individuals and coding a chromosome using integer code of variance relative to coordinates, the genetic operations are used to search global optimization roads. The experimental results show that the algorithm can effectively extract road network from high-resolution SAR images.