期刊文献+
共找到946篇文章
< 1 2 48 >
每页显示 20 50 100
SOI MOSFET Model Parameter Extraction via a Compound Genetic Algorithm 被引量:2
1
作者 李瑞贞 李多力 +2 位作者 杜寰 海潮和 韩郑生 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第5期796-803,共8页
We improve the genetic algorithm by combining it with a simulated annealing algorithm. The improved algorithm is used to extract model parameters of SOI MOSFETs, which are fabricated with standard 1.2μm CMOS/SOI tech... We improve the genetic algorithm by combining it with a simulated annealing algorithm. The improved algorithm is used to extract model parameters of SOI MOSFETs, which are fabricated with standard 1.2μm CMOS/SOI technology developed by the Institute of Microelectronics of the Chinese Academy of Sciences. The simulation results using this model are in excellent agreement with experimental results. The precision is improved noticeably compared to commercial software. This method requires neither a deeper understanding of SOl MOSFETs model nor more complex computations than conventional algorithms used by commercial software. Comprehensive verification shows that this model is applicable to a very large range of device sizes. 展开更多
关键词 SOI parameter extraction genetic algorithm simulated annealing algorithm
下载PDF
Road network extraction in classified SAR images using genetic algorithm
2
作者 肖志强 鲍光淑 蒋晓确 《Journal of Central South University of Technology》 2004年第2期180-184,共5页
Due to the complicated background of objectives and speckle noise, it is almost impossible to extract roads directly from original synthetic aperture radar(SAR) images. A method is proposed for extraction of road netw... Due to the complicated background of objectives and speckle noise, it is almost impossible to extract roads directly from original synthetic aperture radar(SAR) images. A method is proposed for extraction of road network from high-resolution SAR image. Firstly, fuzzy C means is used to classify the filtered SAR image unsupervisedly, and the road pixels are isolated from the image to simplify the extraction of road network. Secondly, according to the features of roads and the membership of pixels to roads, a road model is constructed, which can reduce the extraction of road network to searching globally optimization continuous curves which pass some seed points. Finally, regarding the curves as individuals and coding a chromosome using integer code of variance relative to coordinates, the genetic operations are used to search global optimization roads. The experimental results show that the algorithm can effectively extract road network from high-resolution SAR images. 展开更多
关键词 genetic algorithm road network extraction SAR image fuzzy C means
下载PDF
Key Frames Extraction Based on the Improved Genetic Algorithm
3
作者 ZHOU Dong-sheng JIANG Wei +1 位作者 YI Peng-fei LIU Rui 《Computer Aided Drafting,Design and Manufacturing》 2014年第4期74-78,共5页
In order toovercomethe poor local search ability of genetic algorithm, resulting in the basic genetic algorithm is time-consuming, and low search abilityin the late evolutionary, we use thegray coding instead ofbinary... In order toovercomethe poor local search ability of genetic algorithm, resulting in the basic genetic algorithm is time-consuming, and low search abilityin the late evolutionary, we use thegray coding instead ofbinary codingatthebeginning of the coding;we use multi-point crossoverto replace the originalsingle-point crossoveroperation.Finally, theexperimentshows that the improved genetic algorithmnot only has a strong search capability, but also thestability has been effectively improved. 展开更多
关键词 key frames extraction grey code binary code genetic algorithm
下载PDF
Improved method for the feature extraction of laser scanner using genetic clustering 被引量:6
4
作者 Yu Jinxia Cai Zixing Duan Zhuohua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期280-285,共6页
Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method b... Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method based on genetic clustering VGA-clustering is presented. By integrating the spatial neighbouring information of range data into fuzzy clustering algorithm, a weighted fuzzy clustering algorithm (WFCA) instead of standard clustering algorithm is introduced to realize feature extraction of laser scanner. Aimed at the unknown clustering number in advance, several validation index functions are used to estimate the validity of different clustering algorithms and one validation index is selected as the fitness function of genetic algorithm so as to determine the accurate clustering number automatically. At the same time, an improved genetic algorithm IVGA on the basis of VGA is proposed to solve the local optimum of clustering algorithm, which is implemented by increasing the population diversity and improving the genetic operators of elitist rule to enhance the local search capacity and to quicken the convergence speed. By the comparison with other algorithms, the effectiveness of the algorithm introduced is demonstrated. 展开更多
关键词 laser scanner feature extraction weighted fuzzy clustering validation index genetic algorithm.
下载PDF
Fuzzy adaptive genetic algorithm based on auto-regulating fuzzy rules 被引量:6
5
作者 喻寿益 邝溯琼 《Journal of Central South University》 SCIE EI CAS 2010年第1期123-128,共6页
There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fi... There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fixed. To solve the problems, the fuzzy control method and the genetic algorithms were systematically integrated to create a kind of improved fuzzy adaptive genetic algorithm (FAGA) based on the auto-regulating fuzzy rules (ARFR-FAGA). By using the fuzzy control method, the values of Pc and Pm were adjusted according to the evolutional process, and the fuzzy rules were optimized by another genetic algorithm. Experimental results in solving the function optimization problems demonstrate that the convergence rate and solution quality of ARFR-FAGA exceed those of SGA, AGA and fuzzy adaptive genetic algorithm based on expertise (EFAGA) obviously in the global search. 展开更多
关键词 adaptive genetic algorithm fuzzy rules auto-regulating crossover probability adjustment
下载PDF
Neural network fault diagnosis method optimization with rough set and genetic algorithms
6
作者 孙红岩 《Journal of Chongqing University》 CAS 2006年第2期94-97,共4页
Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. Th... Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. The neural network nodes of the input layer can be calculated and simplified through rough sets theory; The neural network nodes of the middle layer are designed through genetic algorithms training; the neural network bottom-up weights and bias are obtained finally through the combination of genetic algorithms and BP algorithms. The analysis in this paper illustrates that the optimization method can improve the performance of the neural network fault diagnosis method greatly. 展开更多
关键词 rough sets genetic algorithm BP algorithms artificial neural network encoding rule
下载PDF
An Inductive Method with Genetic Algorithm for Learning Phrase-structure-rule of Natural Language
7
作者 HOUFENG WANG and DAWEI DAI(Computer Science Dept., Central China Normal University Wuhan Hubei P.R.Chlna 430070)(Computer science Dept., Wu Han UniversityWuhan ,Hubei P.R.China 430072) 《Wuhan University Journal of Natural Sciences》 CAS 1996年第Z1期640-644,共5页
This paper describes an Inductive method with gnnetic search which learns attribute based phraserllle of natural laguage from set of preclassified examples. Every example is described with some attributes/values. This... This paper describes an Inductive method with gnnetic search which learns attribute based phraserllle of natural laguage from set of preclassified examples. Every example is described with some attributes/values. This algorithm takes an example as a seed, generalizes it by genetic process, and makes it cover as many examples as possible. We use genetic operator in population to perform a probabilistic parallel search in rule space and it will reduce greatly possibe rule search space compared with many other inductive methods. In this paper, we give description of attribute, word, dictionary and rule at first. then we describe learning algoritm and genetic search Proctess, and at last, we give a computing method abour quility of roule C(r). 展开更多
关键词 Phrase-rule Example GENERALIZATION INDUCTION genetic algorithm.
下载PDF
Analysis of Distributed and Adaptive Genetic Algorithm for Mining Interesting Classification Rules
8
作者 YI Yunfei LIN Fang QIN Jun 《现代电子技术》 2008年第10期132-135,138,共5页
Distributed genetic algorithm can be combined with the adaptive genetic algorithm for mining the interesting and comprehensible classification rules.The paper gives the method to encode for the rules,the fitness funct... Distributed genetic algorithm can be combined with the adaptive genetic algorithm for mining the interesting and comprehensible classification rules.The paper gives the method to encode for the rules,the fitness function,the selecting,crossover,mutation and migration operator for the DAGA at the same time are designed. 展开更多
关键词 分析方法 分类规则 计算方法 编码 智能系统
下载PDF
Quality of Service Routing Strategy Using Supervised Genetic Algorithm 被引量:4
9
作者 王兆霞 孙雨耕 +1 位作者 王志勇 沈花玉 《Transactions of Tianjin University》 EI CAS 2007年第1期48-52,共5页
A supervised genetic algorithm (SGA) is proposed to solve the quality of service (QoS) routing problems in computer networks. The supervised rules of intelligent concept are introduced into genetic algorithms (GAs) to... A supervised genetic algorithm (SGA) is proposed to solve the quality of service (QoS) routing problems in computer networks. The supervised rules of intelligent concept are introduced into genetic algorithms (GAs) to solve the constraint optimization problem. One of the main characteristics of SGA is its searching space can be limited in feasible regions rather than infeasible regions. The superiority of SGA to other GAs lies in that some supervised search rules in which the information comes from the problems are incorporated into SGA. The simulation results show that SGA improves the ability of searching an optimum solution and accelerates the convergent process up to 20 times. 展开更多
关键词 supervised genetic algorithm supervised search rules QoS routing
下载PDF
Prediction method of rock burst proneness based on rough set and genetic algorithm 被引量:3
10
作者 YU Huai-chang LIU Hai-ning +1 位作者 LU Xue-song LIU Han-dong 《Journal of Coal Science & Engineering(China)》 2009年第4期367-373,共7页
A new method based on rough set theory and genetic algorithm was proposedto predict the rock burst proneness. Nine influencing factors were first selected, and then,the decision table was set up. Attributes were reduc... A new method based on rough set theory and genetic algorithm was proposedto predict the rock burst proneness. Nine influencing factors were first selected, and then,the decision table was set up. Attributes were reduced by genetic algorithm. Rough setwas used to extract the simplified decision rules of rock burst proneness. Taking the practical engineering for example, the rock burst proneness was evaluated and predicted bydecision rules. Comparing the prediction results with the actual results, it shows that theproposed method is feasible and effective. 展开更多
关键词 rock burst proneness rough set genetic algorithm rule
下载PDF
Genetic Algorithm for Scattered Storage Assignment in Kiva Mobile Fulfillment System 被引量:4
11
作者 Mengcheng Guan Zhenping Li 《American Journal of Operations Research》 2018年第6期474-485,共12页
Scattered storage means an item can be stored in multiple inventory bins. The scattered storage assignment problem based on association rules in Kiva mobile fulfillment system is investigated, which aims to decide the... Scattered storage means an item can be stored in multiple inventory bins. The scattered storage assignment problem based on association rules in Kiva mobile fulfillment system is investigated, which aims to decide the pods for each item to put on so as to minimize the number of pods to be moved when picking a batch of orders. This problem is formulated into an integer programming model. A genetic algorithm is developed to solve the large-sized problems. Computational experiments and comparison between the scattered storage strategy and random storage strategy are conducted to evaluate the performance of the model and algorithm. 展开更多
关键词 SCATTERED Storage ASSIGNMENT KIVA MOBILE Fulfillment SYSTEM Association rules genetic algorithm
下载PDF
Automatic Text Summarization Using Genetic Algorithm and Repetitive Patterns 被引量:2
12
作者 Ebrahim Heidary Hamïd Parvïn +4 位作者 Samad Nejatian Karamollah Bagherifard Vahideh Rezaie Zulkefli Mansor Kim-Hung Pho 《Computers, Materials & Continua》 SCIE EI 2021年第4期1085-1101,共17页
Taking into account the increasing volume of text documents,automatic summarization is one of the important tools for quick and optimal utilization of such sources.Automatic summarization is a text compression process... Taking into account the increasing volume of text documents,automatic summarization is one of the important tools for quick and optimal utilization of such sources.Automatic summarization is a text compression process for producing a shorter document in order to quickly access the important goals and main features of the input document.In this study,a novel method is introduced for selective text summarization using the genetic algorithm and generation of repetitive patterns.One of the important features of the proposed summarization is to identify and extract the relationship between the main features of the input text and the creation of repetitive patterns in order to produce and optimize the vector of the main document features in the production of the summary document compared to other previous methods.In this study,attempts were made to encompass all the main parameters of the summary text including unambiguous summary with the highest precision,continuity and consistency.To investigate the efficiency of the proposed algorithm,the results of the study were evaluated with respect to the precision and recall criteria.The results of the study evaluation showed the optimization the dimensions of the features and generation of a sequence of summary document sentences having the most consistency with the main goals and features of the input document. 展开更多
关键词 Natural language processing extractive summarization features optimization repetitive patterns genetic algorithm
下载PDF
Cobalt crust recognition based on kernel Fisher discriminant analysis and genetic algorithm in reverberation environment 被引量:2
13
作者 ZHAO Hai-ming ZHAO Xiang +1 位作者 HAN Feng-lin WANG Yan-li 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期179-193,共15页
Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust min... Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust mining area,a method based on multiple-feature sets is proposed.Features of the target echoes are extracted by linear prediction method and wavelet analysis methods,and the linear prediction coefficient and linear prediction cepstrum coefficient are also extracted.Meanwhile,the characteristic matrices of modulus maxima,sub-band energy and multi-resolution singular spectrum entropy are obtained,respectively.The resulting features are subsequently compressed by kernel Fisher discriminant analysis(KFDA),the output features are selected using genetic algorithm(GA)to obtain optimal feature subsets,and recognition results of classifier are chosen as genetic fitness function.The advantages of this method are that it can describe the signal features more comprehensively and select the favorable features and remove the redundant features to the greatest extent.The experimental results show the better performance of the proposed method in comparison with only using KFDA or GA. 展开更多
关键词 feature extraction kernel Fisher discriminant analysis(KFDA) genetic algorithm multiple feature sets cobalt crust recognition
下载PDF
Rough Set Theory Based Approach for Fault Diagnosis Rule Extraction of Distribution System 被引量:3
14
作者 ZHOU Yong-yong ZHOU Quan +4 位作者 LIU Jia-bin LIU Yu-ming REN Hai-jun SUN Cai-xin LIU Xu 《高电压技术》 EI CAS CSCD 北大核心 2008年第12期2713-2718,共6页
As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safe... As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safety.This paper analyzes a fault diagnosis approach by using rough set theory in which how to reduce decision table of data set is a main calculation intensive task.Aiming at this reduction problem,a heuristic reduction algorithm based on attribution length and frequency is proposed.At the same time,the corresponding value reduction method is proposed in order to fulfill the reduction and diagnosis rules extraction.Meanwhile,a Euclid matching method is introduced to solve confliction problems among the extracted rules when some information is lacking.Principal of the whole algorithm is clear and diagnostic rules distilled from the reduction are concise.Moreover,it needs less calculation towards specific discernibility matrix,and thus avoids the corresponding NP hard problem.The whole process is realized by MATLAB programming.A simulation example shows that the method has a fast calculation speed,and the extracted rules can reflect the characteristic of fault with a concise form.The rule database,formed by different reduction of decision table,can diagnose single fault and multi-faults efficiently,and give satisfied results even when the existed information is incomplete.The proposed method has good error-tolerate capability and the potential for on-line fault diagnosis. 展开更多
关键词 粗糙集理论 配电网 故障诊断 提取方法 规则匹配
下载PDF
Analytical Solution for the Time-Dependent Emden-Fowler Type of Equations by Homotopy Analysis Method with Genetic Algorithm
15
作者 Waleed Al-Hayani Laheeb Alzubaidy Ahmed Entesar 《Applied Mathematics》 2017年第5期693-711,共19页
In this paper, Homotopy Analysis method with Genetic Algorithm is presented and used to obtain an analytical solution for the time-dependent Emden-Fowler type of equations and wave-type equation with singular behavior... In this paper, Homotopy Analysis method with Genetic Algorithm is presented and used to obtain an analytical solution for the time-dependent Emden-Fowler type of equations and wave-type equation with singular behavior at x = 0. The advantage of this single global method employed to present a reliable framework is utilized to overcome the singularity behavior at the point x = 0 for both models. The method is demonstrated for a variety of problems in one and higher dimensional spaces where approximate-exact solutions are obtained. The results obtained in all cases show the reliability and the efficiency of this method. 展开更多
关键词 HOMOTOPY Analysis Method genetic algorithm EMDEN-FOWLER EQUATION Wave-Type EQUATION Adomian Polynomials Noise Terms Padé APPROXIMANTS SIMPSON rule
下载PDF
Driving rule extraction based on cognitive behavior analysis
16
作者 ZHAO Yu-cheng LIANG Jun +4 位作者 CHEN Long CAI Ying-feng YAO Ming HUA Guo-dong ZHU Ning 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期164-179,共16页
In order to make full use of the driver’s long-term driving experience in the process of perception, interaction and vehicle control of road traffic information, a driving behavior rule extraction algorithm based on ... In order to make full use of the driver’s long-term driving experience in the process of perception, interaction and vehicle control of road traffic information, a driving behavior rule extraction algorithm based on artificial neural network interface(ANNI) and its integration is proposed. Firstly, based on the cognitive learning theory, the cognitive driving behavior model is established, and then the cognitive driving behavior is described and analyzed. Next, based on ANNI, the model and the rule extraction algorithm(ANNI-REA) are designed to explain not only the driving behavior but also the non-sequence. Rules have high fidelity and safety during driving without discretizing continuous input variables. The experimental results on the UCI standard data set and on the self-built driving behavior data set, show that the method is about 0.4% more accurate and about 10% less complex than the common C4.5-REA, Neuro-Rule and REFNE. Further, simulation experiments verify the correctness of the extracted driving rules and the effectiveness of the extraction based on cognitive driving behavior rules. In general, the several driving rules extracted fully reflect the execution mechanism of sequential activity of driving comprehensive cognition, which is of great significance for the traffic of mixed traffic flow under the network of vehicles and future research on unmanned driving. 展开更多
关键词 cognitive driving behavior driving rule extraction cognitive theory integrated algorithm
下载PDF
New Iris Localization Method Based on Chaos Genetic Algorithm
17
作者 贾东立 Muhammad Khurram Khan 张家树 《Journal of Southwest Jiaotong University(English Edition)》 2005年第1期35-38,共4页
This paper present a new method based on Chaos Genetic Algorithm (CGA) to localize the human iris in a given image. First, the iris image is preprocessed to estimate the range of the iris localization, and then CGA is... This paper present a new method based on Chaos Genetic Algorithm (CGA) to localize the human iris in a given image. First, the iris image is preprocessed to estimate the range of the iris localization, and then CGA is used to extract the boundary of the ~iris . Simulation results show that the proposed algorithms is efficient and robust, and can achieve sub pixel precision. Because Genetic Algorithms (GAs) can search in a large space, the algorithm does not need accurate estimation of iris center for subsequent localization, and hence can lower the requirement for original iris image processing. On this point, the present localization algirithm is superior to Daugman's algorithm. 展开更多
关键词 Chaos genetic algorithm Iris localization Geometric primitive extraction
下载PDF
Application of a new feature extraction and optimization method to surface defect recognition of cold rolled strips 被引量:6
18
作者 Guifang Wu Ke Xu Jinwu Xu 《Journal of University of Science and Technology Beijing》 CSCD 2007年第5期437-442,共6页
Considering that the surface defects of cold rolled strips are hard to be recognized by human eyes under high-speed circumstances, an automatic recognition technique was discussed. Spectrum images of defects can be go... Considering that the surface defects of cold rolled strips are hard to be recognized by human eyes under high-speed circumstances, an automatic recognition technique was discussed. Spectrum images of defects can be got by fast Fourier transform (FFF) and sum of valid pixels (SVP), and its optimized center region, which concentrates nearly all energies, are extracted as an original feature set. Using genetic algorithm to optimize the feature set, an optimized feature set with 51 features can be achieved. Using the optimized feature set as an input vector of neural networks, the recognition effects of LVQ neural networks have been studied. Experiment results show that the new method can get a higher classification rate and can settle the automatic recognition problem of surface defects on cold rolled strips ideally. 展开更多
关键词 cold rolled strip surface defect neural networks fast Fourier transform (FFT) feature extraction and optimization genetic algorithm feature set
下载PDF
Component Content Soft-Sensor Based on Hybrid Models in Countercurrent Rare Earth Extraction Process 被引量:3
19
作者 杨辉 王欣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期86-91,共6页
In consideration of the online measurement of the component content in rare earth countercurrent extraction separation process, the soft sensor method based on hybrid modeling was proposed to measure the rare earth co... In consideration of the online measurement of the component content in rare earth countercurrent extraction separation process, the soft sensor method based on hybrid modeling was proposed to measure the rare earth component content. The hybrid models were composed of the extraction equilibrium calculation model and the Radial Basis Function (RBF) Neural Network (NN) error compensation model; the parameters of compensation model were optimized by the hierarchical genetic algorithms (HGA). In addition, application experiment research of this proposed method was carried out in the rare earth separation production process of a corporation. The result shows that this method is effective and can realize online measurement for the component content of rare earth in the countercurrent extraction. 展开更多
关键词 countercurrent extraction soft-sensor equilibrium calculation model RBF neural networks hierarchical genetic algorithms rare earths
下载PDF
Object Extraction Based on Evolutionary Morphological Processing 被引量:1
20
作者 LIBin PANLi 《Geo-Spatial Information Science》 2004年第3期193-197,230,共6页
This paper introduces a novel technique for object detection using genetic algorithms and morphological processing. The method employs a kind of object oriented structure element, which is derived by genetic algorithm... This paper introduces a novel technique for object detection using genetic algorithms and morphological processing. The method employs a kind of object oriented structure element, which is derived by genetic algorithms. The population of morphological filters is iteratively evaluated according to a statistical performance index corresponding to object extraction ability, and evolves into an optimal structuring element using the evolution principles of genetic search. Experimental results of road extraction from high resolution satellite images are presented to illustrate the merit and feasibility of the proposed method. 展开更多
关键词 object extraction genetic algorithms morphological processing high resolution satellite images
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部