The Second Crustal Deformation Monitoring Center, China Seismological Bureau, has detected a marked uplift associated with the Gonghe Ms=7.0 earthquake on April 26, 1990, Qinghai Province. From the observed vertical d...The Second Crustal Deformation Monitoring Center, China Seismological Bureau, has detected a marked uplift associated with the Gonghe Ms=7.0 earthquake on April 26, 1990, Qinghai Province. From the observed vertical deformations and using a rectangular uniform slip model in a homogeneous elastic half space, we first employ genetic algorithms (GA) to infer the approximate global optimal solution, and further use least squares method to get more accurate global optimal solution by taking the approximate solution of GA as the initial parameters of least squares. The inversion results show that the causative fault of Gonghe Ms=7.0 earthquake is a right-lateral reverse fault with strike NW60°, dip SW and dip angle 37°, the coseismic fracture length, width and slip are 37 km, 6 km and 2.7 m respectively. Combination of GA and least squares algorithms is an effective joint inversion method, which could not only escape from local optimum of least squares, but also solve the slow convergence problem of GA after reaching adjacency of global optimal solution.展开更多
We present a global optimization method, called the genetic algorithms (GAs), for digital image/speckle correlation (DISC). The new algorithms do not involve reasonable initial guess of displacement and deformation gr...We present a global optimization method, called the genetic algorithms (GAs), for digital image/speckle correlation (DISC). The new algorithms do not involve reasonable initial guess of displacement and deformation gradient and the calculation of second-order spatial derivatives of the digital images, which are important challenges in practical implementation of DISC. The performance of a GA depends largely on the selection of the genetic operators. We test various operators and propose optimal operators. The algorithms are then verified using simulated images and experimental speckle images.展开更多
Electromagnetic detection satellite(EDS) is a type of Earth observation satellite(EOS). Satellites observation and data down-link scheduling plays a significant role in improving the efficiency of satellite observ...Electromagnetic detection satellite(EDS) is a type of Earth observation satellite(EOS). Satellites observation and data down-link scheduling plays a significant role in improving the efficiency of satellite observation systems. However, the current works mainly focus on the scheduling of imaging satellites, little work focuses on the scheduling of EDSes for its specific requirements.And current works mainly schedule satellite resources and data down-link resources separately, not considering them in a globally optimal perspective. The EDSes and data down-link resources are scheduled in an integrated process and the scheduling result is searched globally. Considering the specific constraints of EDS, a coordinate scheduling model for EDS observation tasks and data transmission jobs is established and an algorithm based on the genetic algorithm is proposed. Furthermore, the convergence of our algorithm is proved. To deal with some specific constraints, a solution repairing algorithm of polynomial computing time is designed. Finally, some experiments are conducted to validate the correctness and practicability of our scheduling algorithms.展开更多
In symmetrical thinned linear arrays design, the positions of thinned array elements are very important for optimal performance in terms of its minimum peak side lobe level (Msli). For the synthesis of thinned array...In symmetrical thinned linear arrays design, the positions of thinned array elements are very important for optimal performance in terms of its minimum peak side lobe level (Msli). For the synthesis of thinned arrays with a given thinning rate, it would have almost the same Msll solution between taking only segmental aperture nearby both ends of the aperture into account and taking all the aperture into account. In this paper, the element distribution characteristic over the aperture of many optimum thinned arrays is studied, then the aperture release model is founded by the least square method to synthesize the thinned arrays. This model is vital for the computing burden alleviation and the efficiency optimization, and would hardly bring any degradation of the obtained array performance.展开更多
文摘The Second Crustal Deformation Monitoring Center, China Seismological Bureau, has detected a marked uplift associated with the Gonghe Ms=7.0 earthquake on April 26, 1990, Qinghai Province. From the observed vertical deformations and using a rectangular uniform slip model in a homogeneous elastic half space, we first employ genetic algorithms (GA) to infer the approximate global optimal solution, and further use least squares method to get more accurate global optimal solution by taking the approximate solution of GA as the initial parameters of least squares. The inversion results show that the causative fault of Gonghe Ms=7.0 earthquake is a right-lateral reverse fault with strike NW60°, dip SW and dip angle 37°, the coseismic fracture length, width and slip are 37 km, 6 km and 2.7 m respectively. Combination of GA and least squares algorithms is an effective joint inversion method, which could not only escape from local optimum of least squares, but also solve the slow convergence problem of GA after reaching adjacency of global optimal solution.
基金This work was supported by 985 Education Development Plan of Tianjin University
文摘We present a global optimization method, called the genetic algorithms (GAs), for digital image/speckle correlation (DISC). The new algorithms do not involve reasonable initial guess of displacement and deformation gradient and the calculation of second-order spatial derivatives of the digital images, which are important challenges in practical implementation of DISC. The performance of a GA depends largely on the selection of the genetic operators. We test various operators and propose optimal operators. The algorithms are then verified using simulated images and experimental speckle images.
基金supported by the National Natural Science Foundation of China(6110118461174159)
文摘Electromagnetic detection satellite(EDS) is a type of Earth observation satellite(EOS). Satellites observation and data down-link scheduling plays a significant role in improving the efficiency of satellite observation systems. However, the current works mainly focus on the scheduling of imaging satellites, little work focuses on the scheduling of EDSes for its specific requirements.And current works mainly schedule satellite resources and data down-link resources separately, not considering them in a globally optimal perspective. The EDSes and data down-link resources are scheduled in an integrated process and the scheduling result is searched globally. Considering the specific constraints of EDS, a coordinate scheduling model for EDS observation tasks and data transmission jobs is established and an algorithm based on the genetic algorithm is proposed. Furthermore, the convergence of our algorithm is proved. To deal with some specific constraints, a solution repairing algorithm of polynomial computing time is designed. Finally, some experiments are conducted to validate the correctness and practicability of our scheduling algorithms.
基金supported by the National Natural Science Fundation of China under Grant No 60702070
文摘In symmetrical thinned linear arrays design, the positions of thinned array elements are very important for optimal performance in terms of its minimum peak side lobe level (Msli). For the synthesis of thinned arrays with a given thinning rate, it would have almost the same Msll solution between taking only segmental aperture nearby both ends of the aperture into account and taking all the aperture into account. In this paper, the element distribution characteristic over the aperture of many optimum thinned arrays is studied, then the aperture release model is founded by the least square method to synthesize the thinned arrays. This model is vital for the computing burden alleviation and the efficiency optimization, and would hardly bring any degradation of the obtained array performance.